Frontiers In Antennas Next Generation Design Engineering


Download Frontiers In Antennas Next Generation Design Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Frontiers In Antennas Next Generation Design Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Frontiers in Antennas: Next Generation Design & Engineering


Frontiers in Antennas: Next Generation Design & Engineering

Author: Frank Gross

language: en

Publisher: McGraw Hill Professional

Release Date: 2010-12-22


DOWNLOAD





The state of the art in antenna design and engineering Edited by one of the world's foremost authorities on smart antennas and featuring contributions from global experts, Frontiers in Antennas discusses the latest advances in antenna design and engineering. This pioneering guide deals primarily with frontier antenna designs and frontier numerical methods. Many of the concepts presented have emerged within the last few years and are still in a rapid state of development. Each chapter provides in-depth details on a unique and modern antenna technology. Frontiers in Antennas covers: Ultra-wideband antenna arrays using fractal, polyfractal, and aperiodic geometries Smart antennas using evolutionary signal processing methods The latest developments in Vivaldi antenna arrays Effective media models applied to artificial magnetic conductors and high impedance surfaces Novel developments in metamaterial antennas Biological antenna design methods using genetic algorithms Contact and parasitic methods applied to reconfigurable antennas Antennas in medicine: ingestible capsule antennas using conformal meandered methods Leaky-wave antennas Plasma antennas which can electronically appear and disappear Numerical methods in antenna modeling using time, frequency, and conformal domain decomposition methods

Computational Electromagnetics


Computational Electromagnetics

Author: Raj Mittra

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-08-20


DOWNLOAD





Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.

Artificial Transmission Lines for RF and Microwave Applications


Artificial Transmission Lines for RF and Microwave Applications

Author: Ferran Martin

language: en

Publisher: John Wiley & Sons

Release Date: 2015-07-01


DOWNLOAD





This book presents and discusses alternatives to ordinary transmission lines for the design and implementation of advanced RF/microwave components in planar technology. This book is devoted to the analysis, study and applications of artificial transmission lines mostly implemented by means of a host line conveniently modified (e.g., with modulation of transverse dimensions, with etched patterns in the metallic layers, etc.) or with reactive loading, in order to achieve novel device functionalities, superior performance, and/or reduced size. The author begins with an introductory chapter dedicated to the fundamentals of planar transmission lines. Chapter 2 is focused on artificial transmission lines based on periodic structures (including non-uniform transmission lines and reactively-loaded lines), and provides a comprehensive analysis of the coupled mode theory. Chapters 3 and 4 are dedicated to artificial transmission lines inspired by metamaterials, or based on metamaterial concepts. These chapters include the main practical implementations of such lines and their circuit models, and a wide overview of their RF/microwave applications (including passive and active circuits and antennas). Chapter 5 focuses on reconfigurable devices based on tunable artificial lines, and on non-linear transmission lines. The chapter also introduces several materials and components to achieve tuning, including diode varactors, RF-MEMS, ferroelectrics, and liquid crystals. Finally, Chapter 6 covers other advanced transmission lines and wave guiding structures, such as electroinductive-/magnetoinductive-wave lines, common-mode suppressed balanced lines, lattice-network artificial lines, and substrate integrated waveguides. Artificial Transmission Lines for RF and Microwave Applications provides an in-depth analysis and discussion of artificial transmission lines, including design guidelines that can be useful to researchers, engineers and students.