From Number Theory To Physics


Download From Number Theory To Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get From Number Theory To Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

From Number Theory to Physics


From Number Theory to Physics

Author: Michel Waldschmidt

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-03-09


DOWNLOAD





The present book contains fourteen expository contributions on various topics connected to Number Theory, or Arithmetics, and its relationships to Theoreti cal Physics. The first part is mathematically oriented; it deals mostly with ellip tic curves, modular forms, zeta functions, Galois theory, Riemann surfaces, and p-adic analysis. The second part reports on matters with more direct physical interest, such as periodic and quasiperiodic lattices, or classical and quantum dynamical systems. The contribution of each author represents a short self-contained course on a specific subject. With very few prerequisites, the reader is offered a didactic exposition, which follows the author's original viewpoints, and often incorpo rates the most recent developments. As we shall explain below, there are strong relationships between the different chapters, even though every single contri bution can be read independently of the others. This volume originates in a meeting entitled Number Theoryand Physics, which took place at the Centre de Physique, Les Houches (Haute-Savoie, France), on March 7 - 16, 1989. The aim of this interdisciplinary meeting was to gather physicists and mathematicians, and to give to members of both com munities the opportunity of exchanging ideas, and to benefit from each other's specific knowledge, in the area of Number Theory, and of its applications to the physical sciences. Physicists have been given, mostly through the program of lectures, an exposition of some of the basic methods and results of Num ber Theory which are the most actively used in their branch.

Number Theory and Physics


Number Theory and Physics

Author: Jean-Marc Luck

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





7 Les Houches Number theory, or arithmetic, sometimes referred to as the queen of mathematics, is often considered as the purest branch of mathematics. It also has the false repu tation of being without any application to other areas of knowledge. Nevertheless, throughout their history, physical and natural sciences have experienced numerous unexpected relationships to number theory. The book entitled Number Theory in Science and Communication, by M.R. Schroeder (Springer Series in Information Sciences, Vol. 7, 1984) provides plenty of examples of cross-fertilization between number theory and a large variety of scientific topics. The most recent developments of theoretical physics have involved more and more questions related to number theory, and in an increasingly direct way. This new trend is especially visible in two broad families of physical problems. The first class, dynamical systems and quasiperiodicity, includes classical and quantum chaos, the stability of orbits in dynamical systems, K.A.M. theory, and problems with "small denominators", as well as the study of incommensurate structures, aperiodic tilings, and quasicrystals. The second class, which includes the string theory of fundamental interactions, completely integrable models, and conformally invariant two-dimensional field theories, seems to involve modular forms and p adic numbers in a remarkable way.

Group Theory and Physics


Group Theory and Physics

Author: Shlomo Sternberg

language: en

Publisher: Cambridge University Press

Release Date: 1995-09-07


DOWNLOAD





This textbook, based on courses taught at Harvard University, is an introduction to group theory and its application to physics. The physical applications are considered as the mathematical theory is developed so that the presentation is unusually cohesive and well-motivated. Many modern topics are dealt with, and there is much discussion of the group SU(n) and its representations. This is of great significance in elementary particle physics. Applications to solid state physics are also considered. This stimulating account will prove to be an essential resource for senior undergraduate students and their teachers.