From Ml Algorithms To Genai Llms By Aman Kharwal Pdf

Download From Ml Algorithms To Genai Llms By Aman Kharwal Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get From Ml Algorithms To Genai Llms By Aman Kharwal Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
From ML Algorithms to GenAI & LLMs

From ML Algorithms to GenAI & LLMs, Written by Aman Kharwal, founder of Statso.io, is the second edition of the book - Machine Learning Algorithms: Handbook. This book offers a comprehensive and expanded guide through the evolving world of machine learning and generative AI. Whether you are an experienced data scientist or just starting, this edition delivers practical insights and clear explanations of essential concepts like regression, classification, clustering, deep learning, and time series forecasting. This edition introduces two new chapters: "Mastering GenAI and LLMs" and "Understanding GANs for Generative AI with a Hands-on Project", which provide deep dives into large language models and generative adversarial networks (GANs). With hands-on Python code snippets and real-world project examples, the book bridges the gap between theory and application, offering you the tools to apply machine learning techniques effectively. Additional highlights include performance evaluation methods, data preprocessing techniques, feature engineering, and a quick reference appendix for tuning machine learning models. The book equips you with the necessary skills to navigate modern machine learning and AI, which makes it an essential resource for anyone interested in the field.
Machine Learning Algorithms: Handbook

Key Features: Clear Explanations of Machine Learning Algorithms: The book offers clear and concise explanations of machine learning algorithms, ensuring that readers of all levels can grasp the concepts effortlessly. Hands-On Approach: Packed with practical examples using Python and code snippets, you'll gain a hands-on understanding of how each algorithm works and learn to implement them in real projects. Comprehensive Coverage: From linear regression and support vector machines to decision trees and neural networks, the book covers a wide array of algorithms, giving you a solid foundation to explore diverse problem domains. Performance Evaluation Methods: Learn how to evaluate the effectiveness of your models, identify areas for improvement, and optimize their performance using industry-standard evaluation techniques. Data Preprocessing Techniques: Discover the critical elements of data preprocessing that lay the groundwork for building robust and accurate machine learning models. Time Series Forecasting: Explore advanced algorithms specifically designed for time series data, a critical component of numerous real-world applications. Appendix for Easy Reference: Access all parameters of commonly used machine learning algorithms in a handy appendix, facilitating efficient model tuning.
Solving Data Science Case Studies with Python

This book is specially written for those who know the basics of the Python programming language as well as the necessary Python libraries you need for data science like NumPy, Pandas, Matplotlib, Seaborn, Plotly, and Scikit-learn. This book aims to teach you how to think while solving a business problem with your data science skills. To achieve the goal of this book, I started by giving you all the knowledge you need to have before you apply for your first data science job. The technical skills and soft skills you need to become a Data Scientist are also discussed in this book. Next, you'll find some of the best data science case studies that will help you understand what your approach should be while solving a business problem. Ultimately, you will also find some of the most important data science interview questions with their solutions at the end. I hope this book will add a lot of value to your data science skills and that you will feel confident in your entire journey to become Data Scientist.