From Hamiltonian Chaos To Complex Systems


Download From Hamiltonian Chaos To Complex Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get From Hamiltonian Chaos To Complex Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

From Hamiltonian Chaos to Complex Systems


From Hamiltonian Chaos to Complex Systems

Author: Xavier Leoncini

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-07-14


DOWNLOAD





From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of research in various fields of physics and beyond, most notably with the perspective of application in complex systems.

Chaos


Chaos

Author: Angelo Vulpiani

language: en

Publisher: World Scientific

Release Date: 2010


DOWNLOAD





Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.

The Physics of Chaos in Hamiltonian Systems


The Physics of Chaos in Hamiltonian Systems

Author: George M. Zaslavsky

language: en

Publisher: Imperial College Press

Release Date: 2007


DOWNLOAD





This book aims to familiarize the reader with the essential properties of the chaotic dynamics of Hamiltonian systems by avoiding specialized mathematical tools, thus making it easily accessible to a broader audience of researchers and students. Unique material on the most intriguing and fascinating topics of unsolved and current problems in contemporary chaos theory is presented. The coverage includes: separatrix chaos; properties and a description of systems with non-ergodic dynamics; the distribution of Poincar(r) recurrences and their role in transport theory; dynamical models of the MaxwellOCOs Demon, the occurrence of persistent fluctuations, and a detailed discussion of their role in the problem underlying the foundation of statistical physics; the emergence of stochastic webs in phase space and their link to space tiling with periodic (crystal type) and aperiodic (quasi-crystal type) symmetries. This second edition expands on pseudochaotic dynamics with weak mixing and the new phenomenon of fractional kinetics, which is crucial to the transport properties of chaotic motion. The book is ideally suited to all those who are actively working on the problems of dynamical chaos as well as to those looking for new inspiration in this area. It introduces the physicist to the world of Hamiltonian chaos and the mathematician to actual physical problems.The material can also be used by graduate students."