From Foundations To Philosophy Of Mathematics

Download From Foundations To Philosophy Of Mathematics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get From Foundations To Philosophy Of Mathematics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Philosophy of Mathematics

Author: Øystein Linnebo
language: en
Publisher: Princeton University Press
Release Date: 2020-03-24
A sophisticated, original introduction to the philosophy of mathematics from one of its leading thinkers Mathematics is a model of precision and objectivity, but it appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic, accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Øystein Linnebo, one of the world's leading scholars on the subject, introduces all of the classical approaches to the field as well as more specialized issues, including mathematical intuition, potential infinity, and the search for new mathematical axioms. Sophisticated but clear and approachable, this is an essential book for all students and teachers of philosophy and of mathematics.
Philosophy and Foundations of Mathematics

L.E.J. Brouwer: Collected Works, Volume 1: Philosophy and Foundations of Mathematics focuses on the principles, operations, and approaches promoted by Brouwer in studying the philosophy and foundations of mathematics. The publication first ponders on the construction of mathematics. Topics include arithmetic of integers, negative numbers, measurable continuum, irrational numbers, Cartesian geometry, similarity group, characterization of the linear system of the Cartesian or Euclidean and hyperbolic space, and non-Archimedean uniform groups on the one-dimensional continuum. The book then examines mathematics and experience and mathematics and logic. Topics include denumerably unfinished sets, continuum problem, logic of relations, consistency proofs for formal systems independent of their interpretation, infinite numbers, and problems of space and time. The text is a valuable reference for students, mathematicians, and researchers interested in the contributions of Brouwer in the studies on the philosophy and foundations of mathematics.
From Foundations to Philosophy of Mathematics

Author: Joan Roselló
language: en
Publisher: Cambridge Scholars Publishing
Release Date: 2011-10-18
From Foundations to Philosophy of Mathematics provides an historical introduction to the most exciting period in the foundations of mathematics, starting with the discovery of the paradoxes of logic and set theory at the beginning of the twentieth century and continuing with the great foundational debate that took place in the 1920s. As a result of the efforts of several mathematicians and philosophers during this period to ground mathematics and to clarify its nature from a certain philosophical standpoint, the four main schools in the philosophy of mathematics that have largely dominated the twentieth century arose, namely, logicism, intuitionism, formalism and predicativism. It was due precisely to the insufficiencies of the first three foundational programs and the objections raised against them, that interest in Platonism was renewed in the 1940s, mainly by Gödel. Not only does this book pay special attention to the foundational programs of these philosophies of mathematics, but also to some technical accomplishments that were developed in close connection with them and have largely shaped our understanding of the nature of mathematics, such as Russell’s type theory, Zermelo’s set theory and Gödel’s incompleteness theorems. Finally, it also examines some current research programs that have been pursued in the last decades and have tried, at least to some extent, to show the feasibility of the foundational programs developed in the schools mentioned above. This is the case of neologicism, constructivism, and predicativist and finitist reductionism, this last one developed closely with the research program of reverse mathematics.