Foundational Python For Data Science


Download Foundational Python For Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Foundational Python For Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Foundational Python for Data Science


Foundational Python for Data Science

Author: Kennedy Behrman

language: en

Publisher: Pearson

Release Date: 2021-10-12


DOWNLOAD





Learn all the foundational Python you'll need to solve real data science problems Data science and machine learning--two of the world's hottest fields--are attracting talent from a wide variety of technical, business, and liberal arts disciplines. Python, the world's #1 programming language, is also the most popular language for data science and machine learning. This is the first guide specifically designed to help millions of people with widely diverse backgrounds learn Python so they can use it for data science and machine learning. Leading data science instructor and practitioner Kennedy Behrman first walks through the process of learning to code for the first time with Python and Jupyter notebook, then introduces key libraries every Python data science programmer needs to master. Once you've learned these foundations, Behrman introduces intermediate and applied Python techniques for real-world problem-solving. Master Google colab notebook Data Science programming Manipulate data with popular Python libraries such as: pandas and numpy Apply Python Data Science recipes to real world projects Learn functional programming essentials unique to Data Science Access case studies, chapter exercises, learning assessments, comprehensive Jupyter based Notebooks, and a complete final project Throughout, Foundational Python for Data Science presents hands-on exercises, learning assessments, case studies, and more--all created with colab (Jupyter compatible) notebooks, so you can execute all coding examples interactively without installing or configuring any software.

Advanced Data Science and Analytics with Python


Advanced Data Science and Analytics with Python

Author: Jesus Rogel-Salazar

language: en

Publisher: CRC Press

Release Date: 2020-05-05


DOWNLOAD





Advanced Data Science and Analytics with Python enables data scientists to continue developing their skills and apply them in business as well as academic settings. The subjects discussed in this book are complementary and a follow-up to the topics discussed in Data Science and Analytics with Python. The aim is to cover important advanced areas in data science using tools developed in Python such as SciKit-learn, Pandas, Numpy, Beautiful Soup, NLTK, NetworkX and others. The model development is supported by the use of frameworks such as Keras, TensorFlow and Core ML, as well as Swift for the development of iOS and MacOS applications. Features: Targets readers with a background in programming, who are interested in the tools used in data analytics and data science Uses Python throughout Presents tools, alongside solved examples, with steps that the reader can easily reproduce and adapt to their needs Focuses on the practical use of the tools rather than on lengthy explanations Provides the reader with the opportunity to use the book whenever needed rather than following a sequential path The book can be read independently from the previous volume and each of the chapters in this volume is sufficiently independent from the others, providing flexibility for the reader. Each of the topics addressed in the book tackles the data science workflow from a practical perspective, concentrating on the process and results obtained. The implementation and deployment of trained models are central to the book. Time series analysis, natural language processing, topic modelling, social network analysis, neural networks and deep learning are comprehensively covered. The book discusses the need to develop data products and addresses the subject of bringing models to their intended audiences – in this case, literally to the users’ fingertips in the form of an iPhone app. About the Author Dr. Jesús Rogel-Salazar is a lead data scientist in the field, working for companies such as Tympa Health Technologies, Barclays, AKQA, IBM Data Science Studio and Dow Jones. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK.

Learn Data Science Using Python


Learn Data Science Using Python

Author: Engy Fouda

language: en

Publisher: Springer Nature

Release Date: 2024-11-15


DOWNLOAD





Harness the capabilities of Python and gain the expertise need to master data science techniques. This step-by-step book guides you through using Python to achieve tasks related to data cleaning, statistics, and visualization. You’ll start by reviewing the foundational aspects of the data science process. This includes an extensive overview of research points and practical applications, such as the insightful analysis of presidential elections. The journey continues by navigating through installation procedures and providing valuable insights into Python, data types, typecasting, and essential libraries like Pandas and NumPy. You’ll then delve into the captivating world of data visualization. Concepts such as scatter plots, histograms, and bubble charts come alive through detailed discussions and practical code examples, unraveling the complexities of creating compelling visualizations for enhanced data understanding. Statistical analysis, linear models, and advanced data preprocessing techniques are also discussed before moving on to preparing data for analysis, including renaming variables, variable rearrangement, and conditional statements. Finally, you’ll be introduced to regression techniques, demystifying the intricacies of simple and multiple linear regression, as well as logistic regression. What You’ll Learn Understand installation procedures and valuable insights into Python, data types, typecasting Examine the fundamental statistical analysis required in most data science and analytics reports Clean the most common data set problems Use linear progression for data prediction Who This Book Is For Data Analysts, data scientists, Python programmers, and software developers new to data science.