Formal Methods For Embedded System Design

Download Formal Methods For Embedded System Design PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Formal Methods For Embedded System Design book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Formal Methods and Models for System Design

Author: Rajesh Gupta
language: en
Publisher: Springer Science & Business Media
Release Date: 2004-10-01
Perhaps nothing characterizes the inherent heterogeneity in embedded sys tems than the ability to choose between hardware and software implementations of a given system function. Indeed, most embedded systems at their core repre sent a careful division and design of hardware and software parts of the system To do this task effectively, models and methods are necessary functionality. to capture application behavior, needs and system implementation constraints. Formal modeling can be valuable in addressing these tasks. As with most engineering domains, co-design practice defines the state of the it seeks to add new capabilities in system conceptualization, mod art, though eling, optimization and implementation. These advances -particularly those related to synthesis and verification tasks -direct1y depend upon formal under standing of system behavior and performance measures. Current practice in system modeling relies upon exploiting high-level programming frameworks, such as SystemC, EstereI, to capture design at increasingly higher levels of ab straction and attempts to reduce the system implementation task. While raising the abstraction levels for design and verification tasks, to be really useful, these approaches must also provide for reuse, adaptation of the existing intellectual property (IP) blocks.
Embedded Systems and Software Validation

Author: Abhik Roychoudhury
language: en
Publisher: Morgan Kaufmann
Release Date: 2009-04-29
Modern embedded systems require high performance, low cost and low power consumption. Such systems typically consist of a heterogeneous collection of processors, specialized memory subsystems, and partially programmable or fixed-function components. This heterogeneity, coupled with issues such as hardware/software partitioning, mapping, scheduling, etc., leads to a large number of design possibilities, making performance debugging and validation of such systems a difficult problem. Embedded systems are used to control safety critical applications such as flight control, automotive electronics and healthcare monitoring. Clearly, developing reliable software/systems for such applications is of utmost importance. This book describes a host of debugging and verification methods which can help to achieve this goal. - Covers the major abstraction levels of embedded systems design, starting from software analysis and micro-architectural modeling, to modeling of resource sharing and communication at the system level - Integrates formal techniques of validation for hardware/software with debugging and validation of embedded system design flows - Includes practical case studies to answer the questions: does a design meet its requirements, if not, then which parts of the system are responsible for the violation, and once they are identified, then how should the design be suitably modified?