Flood Forecasting Using Artificial Neural Network Ann In Maran Pahang

Download Flood Forecasting Using Artificial Neural Network Ann In Maran Pahang PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Flood Forecasting Using Artificial Neural Network Ann In Maran Pahang book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Flood Forecasting Using Artificial Neural Networks

This dissertation considers various questions with respect to the effects of salinity on nutrification: what are the main inhibiting factors causing the effects, do all salts have similar effects, what is the maximum acceptable salt level, are ammonia oxidisers or nitrite oxidizers most sensitive to salt stress, can nitrifiers adapt to long term salt stress and are some specific nitrifiers more resistant to salt stress than others? Research was carried out at laboratory scale and in full-scale plants and modelling was employed in both phases to provide a mathematical description for salt inhibition on nitrification and to facilitate the comparison. The result has led to an improved understanding of the effect of salinity on nitrification. The results can be used to improve the sustainability of the exisisting wastewater treatment plants operated under salt stress.
Flood Forecasting Using Machine Learning Methods

Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.