Finiteness And Regularity In Semigroups And Formal Languages

Download Finiteness And Regularity In Semigroups And Formal Languages PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Finiteness And Regularity In Semigroups And Formal Languages book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Finiteness and Regularity in Semigroups and Formal Languages

Author: Aldo de Luca
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The aim of this monograph is to present some recent research work on the combinatorial aspects of the theory of semigroups which are of great inter est for both algebra and theoretical computer science. This research mainly concerns that part of combinatorics of finite and infinite words over a finite alphabet which is usually called the theory of "unavoidable" regularities. The unavoidable regularities ofsufficiently large words over a finite alpha bet are very important in the study of finiteness conditions for semigroups. This problem consists in considering conditions which are satisfied by a fi nite semigroup and are such as to assure that a semigroup satisfying them is finite. The most natural requirement is that the semigroup is finitely gener ated. Ifone supposes that the semigroup is also periodic the study offiniteness conditions for these semigroups (or groups) is called the Burnside problem for semigroups (or groups). There exists an important relationship with the theory of finite automata because, as is well known, a language L over a fi nite alphabet is regular (that is, recognizable by a finite automaton) if and only if its syntactic monoid S(L) is finite. Hence, in principle, any finite ness condition for semigroups can be translated into a regularity condition for languages. The study of finiteness conditions for periodic languages (Le. , such that the syntactic semigroup is periodic) has been called the Burnside problem for languages.
Semigroups And Formal Languages - Proceedings Of The International Conference

Author: Gracinda M S Gomes
language: en
Publisher: World Scientific
Release Date: 2007-06-11
This festschrift volume in honour of Donald B McAlister on the occasion of his 65th birthday presents papers from leading researchers in semigroups and formal languages. The contributors cover a number of areas of current interest: from pseudovarieties and regular languages to ordered groupoids and one-relator groups, and from semigroup algebras to presentations of monoids and transformation semigroups. The papers are accessible to graduate students as well as researchers seeking new directions for future work.
Rings with Polynomial Identities and Finite Dimensional Representations of Algebras

Author: Eli Aljadeff
language: en
Publisher: American Mathematical Soc.
Release Date: 2020-12-14
A polynomial identity for an algebra (or a ring) A A is a polynomial in noncommutative variables that vanishes under any evaluation in A A. An algebra satisfying a nontrivial polynomial identity is called a PI algebra, and this is the main object of study in this book, which can be used by graduate students and researchers alike. The book is divided into four parts. Part 1 contains foundational material on representation theory and noncommutative algebra. In addition to setting the stage for the rest of the book, this part can be used for an introductory course in noncommutative algebra. An expert reader may use Part 1 as reference and start with the main topics in the remaining parts. Part 2 discusses the combinatorial aspects of the theory, the growth theorem, and Shirshov's bases. Here methods of representation theory of the symmetric group play a major role. Part 3 contains the main body of structure theorems for PI algebras, theorems of Kaplansky and Posner, the theory of central polynomials, M. Artin's theorem on Azumaya algebras, and the geometric part on the variety of semisimple representations, including the foundations of the theory of Cayley–Hamilton algebras. Part 4 is devoted first to the proof of the theorem of Razmyslov, Kemer, and Braun on the nilpotency of the nil radical for finitely generated PI algebras over Noetherian rings, then to the theory of Kemer and the Specht problem. Finally, the authors discuss PI exponent and codimension growth. This part uses some nontrivial analytic tools coming from probability theory. The appendix presents the counterexamples of Golod and Shafarevich to the Burnside problem.