Finite Frame Theory A Complete Introduction To Overcompleteness


Download Finite Frame Theory A Complete Introduction To Overcompleteness PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Finite Frame Theory A Complete Introduction To Overcompleteness book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Finite Frame Theory: A Complete Introduction to Overcompleteness


Finite Frame Theory: A Complete Introduction to Overcompleteness

Author: Kasso A. Okoudjou

language: en

Publisher: American Mathematical Soc.

Release Date: 2016-07-13


DOWNLOAD





Frames are overcomplete sets of vectors that can be used to stably and faithfully decompose and reconstruct vectors in the underlying vector space. Frame theory stands at the intersection of many areas in mathematics such as functional and harmonic analysis, numerical analysis, matrix theory, numerical linear algebra, algebraic and differential geometry, probability, statistics, and convex geometry. At the same time its applications in engineering, medicine, computer science, and quantum computing are motivating new research problems in applied and pure mathematics. This volume is based on lectures delivered at the 2015 AMS Short Course “Finite Frame Theory: A Complete Introduction to Overcompleteness”, held January 8–9, 2015 in San Antonio, TX. Mostly written in a tutorial style, the seven chapters contained in this volume survey recent advances in the theory and applications of finite frames. In particular, it presents state-of-the-art results on foundational frame problems, and on the analysis and design of various frames, mostly motivated by specific applications. Carefully assembled, the volume quickly introduces the non-expert to the basic tools and techniques of frame theory. It then moves to develop many recent results in the area and presents some important applications. As such, the volume is designed for a diverse audience including researchers in applied and computational harmonic analysis, as well as engineers and graduate students.

Frames and Other Bases in Abstract and Function Spaces


Frames and Other Bases in Abstract and Function Spaces

Author: Isaac Pesenson

language: en

Publisher: Birkhäuser

Release Date: 2017-06-11


DOWNLOAD





The first of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume I is organized around the theme of frames and other bases in abstract and function spaces, covering topics such as: The advanced development of frames, including Sigma-Delta quantization for fusion frames, localization of frames, and frame conditioning, as well as applications to distributed sensor networks, Galerkin-like representation of operators, scaling on graphs, and dynamical sampling. A systematic approach to shearlets with applications to wavefront sets and function spaces. Prolate and generalized prolate functions, spherical Gauss-Laguerre basis functions, and radial basis functions. Kernel methods, wavelets, and frames on compact and non-compact manifolds.

Finite Frame Theory


Finite Frame Theory

Author: Kasso A. Okoudjou

language: en

Publisher:

Release Date: 2016


DOWNLOAD





Frames are overcomplete sets of vectors that can be used to stably and faithfully decompose and reconstruct vectors in the underlying vector space. Frame theory stands at the intersection of many areas in mathematics such as functional and harmonic analysis, numerical analysis, matrix theory, numerical linear algebra, algebraic and differential geometry, probability, statistics, and convex geometry. At the same time its applications in engineering, medicine, computer science, and quantum computing are motivating new research problems in applied and pure mathematics. This volume is based on lec.