Finite Elements Of Nonlinear Continua

Download Finite Elements Of Nonlinear Continua PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Finite Elements Of Nonlinear Continua book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Finite Elements of Nonlinear Continua

Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view. The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical solution of the equations governing the discrete model. Though the theory and methods are sufficiently general to be applied to any nonlinear problem, emphasis has been placed on problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity. Problems in rarefied gas dynamics and nonlinear partial differential equations are also examined. Other topics include topological properties of finite element models, applications to linear and nonlinear boundary value problems, and discrete models of nonlinear thermomechanical behavior of dissipative media. This comprehensive text is valuable not only to students of structural analysis and continuum mechanics but also to professionals researching the numerical analysis of continua
Nonlinear Finite Elements for Continua and Structures

Nonlinear Finite Elements for Continua and Structures p>Nonlinear Finite Elements for Continua and Structures This updated and expanded edition of the bestselling textbook provides a comprehensive introduction to the methods and theory of nonlinear finite element analysis. New material provides a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite element modeling, and includes the eXtended Finite Element Method (XFEM), multiresolution continuum theory for multiscale microstructures, and dislocation- density-based crystalline plasticity. Nonlinear Finite Elements for Continua and Structures, Second Edition focuses on the formulation and solution of discrete equations for various classes of problems that are of principal interest in applications to solid and structural mechanics. Topics covered include the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; procedures for the solution of the discrete equations, including considerations of both numerical and multiscale physical instabilities; and the treatment of structural and contact-impact problems. Key features: Presents a detailed and rigorous treatment of nonlinear solid mechanics and how it can be implemented in finite element analysis Covers many of the material laws used in today’s software and research Introduces advanced topics in nonlinear finite element modelling of continua Introduction of multiresolution continuum theory and XFEM Accompanied by a website hosting a solution manual and MATLAB® and FORTRAN code Nonlinear Finite Elements for Continua and Structures, Second Edition is a must-have textbook for graduate students in mechanical engineering, civil engineering, applied mathematics, engineering mechanics, and materials science, and is also an excellent source of information for researchers and practitioners.
Nonlinear Finite Element Methods

Author: Peter Wriggers
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-11-04
Finite element methods have become ever more important to engineers as tools for design and optimization, now even for solving non-linear technological problems. However, several aspects must be considered for finite-element simulations which are specific for non-linear problems: These problems require the knowledge and the understanding of theoretical foundations and their finite-element discretization as well as algorithms for solving the non-linear equations. This book provides the reader with the required knowledge covering the complete field of finite element analyses in solid mechanics. It is written for advanced students in engineering fields but serves also as an introduction into non-linear simulation for the practising engineer.