Finite Elasticity And Viscoelasticity

Download Finite Elasticity And Viscoelasticity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Finite Elasticity And Viscoelasticity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Finite Elasticity and Viscoelasticity

Author: Aleksey D. Drozdov
language: en
Publisher: World Scientific
Release Date: 1996-01-01
This book provides a systematic and self-consistent introduction to the nonlinear continuum mechanics of solids, from the main axioms to comprehensive aspects of the theory. The objective is to expose the most intriguing aspects of elasticity and viscoelasticity with finite strains in such a way as to ensure mathematical correctness, on the one hand, and to demonstrate a wide spectrum of physical phenomena typical only of nonlinear mechanics, on the other.A novel aspect of the book is that it contains a number of examples illustrating surprising behaviour in materials with finite strains, as well as comparisons between theoretical predictions and experimental data for rubber-like polymers and elastomers.The book aims to fill a gap between mathematicians specializing in nonlinear continuum mechanics, and physicists and engineers who apply the methods of solid mechanics to a wide range of problems in civil and mechanical engineering, materials science, and polymer physics. The book has been developed from a graduate course in applied mathematics which the author has given for a number of years.
Continuum Mechanics

Most books on continuum mechanics focus on elasticity and fluid mechanics. But whether student or practicing professional, modern engineers need a more thorough treatment to understand the behavior of the complex materials and systems in use today. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity offers a complete tour of the subject that includes not only elasticity and fluid mechanics but also covers plasticity, viscoelasticity, and the continuum model for fatigue and fracture mechanics. In addition to a broader scope, this book also supplies a review of the necessary mathematical tools and results for a self-contained treatment. The author provides finite element formulations of the equations encountered throughout the chapters and uses an approach with just the right amount of mathematical rigor without being too theoretical for practical use. Working systematically from the continuum model for the thermomechanics of materials, coverage moves through linear and nonlinear elasticity using both tensor and matrix notation, plasticity, viscoelasticity, and concludes by introducing the fundamentals of fracture mechanics and fatigue of metals. Requisite mathematical tools appear in the final chapter for easy reference. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity builds a strong understanding of the principles, equations, and finite element formulations needed to solve real engineering problems.
Viscoelastic Structures

Viscoelastic Structures covers the four basic problems in the mechanics of viscoelastic solids and structural members: construction of constitutive models for the description of thermoviscoelastic behavior of polymers; mathematical modeling of manufacturing advanced composite materials; optimal-design of structural members and technological processes of their fabrication; and stability analysis for thin-walled structural members driven by time-varying loads.This book familiarizes the reader with state-of-the-art mathematical models for advanced materials and processes, and demonstrates their applications in modeling and simulating specific manufacturing processes. Viscoelastic Structures also demonstrates the effects of material, geometrical, and technological parameters on the characteristic features of viscoelastic structures.1Presents state-of-the-art mathematical models and methods which serve for the analysis of advanced technological processes1Includes numerous examples to demonstrate theory which have not been included in previous literature1Employs one consistent, user-friendly method to study a number of technological processes1Features unique approach to aging materials1Appendices cover background material on tensor calculus, kinematics with finite strains, stochastic differential equations, and evolutionary equations with operator coefficients