Finding Groups In Data An Introduction To Cluster Analysis 2005

Download Finding Groups In Data An Introduction To Cluster Analysis 2005 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Finding Groups In Data An Introduction To Cluster Analysis 2005 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Finding Groups in Data

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "Cluster analysis is the increasingly important and practical subject of finding groupings in data. The authors set out to write a book for the user who does not necessarily have an extensive background in mathematics. They succeed very well." —Mathematical Reviews "Finding Groups in Data [is] a clear, readable, and interesting presentation of a small number of clustering methods. In addition, the book introduced some interesting innovations of applied value to clustering literature." —Journal of Classification "This is a very good, easy-to-read, and practical book. It has many nice features and is highly recommended for students and practitioners in various fields of study." —Technometrics An introduction to the practical application of cluster analysis, this text presents a selection of methods that together can deal with most applications. These methods are chosen for their robustness, consistency, and general applicability. This book discusses various types of data, including interval-scaled and binary variables as well as similarity data, and explains how these can be transformed prior to clustering.
Finding Groups in Data

Author: Leonard Kaufman
language: en
Publisher: Wiley-Interscience
Release Date: 1990-03-22
Partitioning around medoids (Program PAM). Clustering large applications (Program CLARA). Fuzzy analysis (Program FANNY). Agglomerative Nesting (Program AGNES). Divisive analysis (Program DIANA). Monothetic analysis (Program MONA). Appendix.
Data Clustering: Theory, Algorithms, and Applications, Second Edition

Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.