Filtering Control And Fault Detection With Randomly Occurring Incomplete Information


Download Filtering Control And Fault Detection With Randomly Occurring Incomplete Information PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Filtering Control And Fault Detection With Randomly Occurring Incomplete Information book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Filtering, Control and Fault Detection with Randomly Occurring Incomplete Information


Filtering, Control and Fault Detection with Randomly Occurring Incomplete Information

Author: Hongli Dong

language: en

Publisher: John Wiley & Sons

Release Date: 2013-06-13


DOWNLOAD





In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modelling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Filtering, Control and Fault Detection with Randomly Occurring Incomplete Information reflects the state-of-the-art of the research area for handling randomly occurring incomplete information from three interrelated aspects of control, filtering and fault detection. Recent advances in networked control systems and distributed filtering over sensor networks are covered, and application potential in mobile robotics is also considered. The reader will benefit from the introduction of new concepts, new models and new methodologies with practical significance in control engineering and signal processing. Key Features: Establishes a unified framework for filtering, control and fault detection problem for various discrete-time nonlinear stochastic systems with randomly occurring incomplete information Investigates several new concepts for randomly occurring phenomena and proposes a new system model to better describe network-induced problems Demonstrates how newly developed techniques can handle emerging mathematical and computational challenges Contains the latest research results Filtering, Control and Fault Detection with Randomly Occurring Incomplete Information provides a unified yet neat framework for control/filtering/fault-detection with randomly occurring incomplete information. It is a comprehensive textbook for graduate students and is also a useful practical research reference for engineers dealing with control, filtering and fault detection problems for networked systems.

Performance Analysis and Synthesis for Discrete-Time Stochastic Systems with Network-Enhanced Complexities


Performance Analysis and Synthesis for Discrete-Time Stochastic Systems with Network-Enhanced Complexities

Author: Derui Ding

language: en

Publisher: CRC Press

Release Date: 2018-10-11


DOWNLOAD





The book addresses the system performance with a focus on the network-enhanced complexities and developing the engineering-oriented design framework of controllers and filters with potential applications in system sciences, control engineering and signal processing areas. Therefore, it provides a unified treatment on the analysis and synthesis for discrete-time stochastic systems with guarantee of certain performances against network-enhanced complexities with applications in sensor networks and mobile robotics. Such a result will be of great importance in the development of novel control and filtering theories including industrial impact. Key Features Provides original methodologies and emerging concepts to deal with latest issues in the control and filtering with an emphasis on a variety of network-enhanced complexities Gives results of stochastic control and filtering distributed control and filtering, and security control of complex networked systems Captures the essence of performance analysis and synthesis for stochastic control and filtering Concepts and performance indexes proposed reflect the requirements of engineering practice Methodologies developed in this book include backward recursive Riccati difference equation approach and the discrete-time version of input-to-state stability in probability

Networked Nonlinear Stochastic Time-Varying Systems


Networked Nonlinear Stochastic Time-Varying Systems

Author: Hongli Dong

language: en

Publisher: CRC Press

Release Date: 2021-09-09


DOWNLOAD





Networked Non-linear Stochastic Time-Varying Systems: Analysis and Synthesis copes with the filter design, fault estimation and reliable control problems for different classes of nonlinear stochastic time-varying systems with network-enhanced complexities. Divided into three parts, the book discusses the finite-horizon filtering, fault estimation and reliable control, and randomly occurring nonlinearities/uncertainties followed by designing of distributed state and fault estimators, and distributed filters. The third part includes problems of variance-constrained H∞ state estimation, partial-nodes-based state estimation and recursive filtering for nonlinear time-varying complex networks with randomly varying topologies, and random coupling strengths. Offers a comprehensive treatment of the topics related to Networked Nonlinear Stochastic Time-Varying Systems with rigorous math foundation and derivation Unifies existing and emerging concepts concerning control/filtering/estimation and distributed filtering Provides a series of latest results by drawing on the conventional theories of systems science, control engineering and signal processing Deal with practical engineering problems such as event triggered H∞ filtering, non-fragile distributed estimation, recursive filtering, set-membership filtering Demonstrates illustrative examples in each chapter to verify the correctness of the proposed results This book is aimed at engineers, mathematicians, scientists, and upper-level students in the fields of control engineering, signal processing, networked control systems, robotics, data analysis, and automation.