Field Analysis And Electromagnetics

Download Field Analysis And Electromagnetics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Field Analysis And Electromagnetics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Methods for Electromagnetic Field Analysis

Author: Ismo V. Lindell
language: en
Publisher: Oxford University Press, USA
Release Date: 1992
This monograph discusses mathematical and conceptual methods used in the analysis of electromagnetic fields and waves. Dyadic algebra is reviewed and armed with new identities to be applied throughout the book. The power of dyadic operations is seen when working with boundary, sheet, and interface conditions, medium equations, field transformations, Green functions, plane wave problems, vector circuit theory, multipole and image sources. Dyadic algebra allows convenience in handling problems involving chiral and bianisotropic media, of recent interest because of their wide range of potential applications. The final chapter gives, for the first time in book form, a unified presentation of EIT, the exact image theory, introduced by this author and colleagues. EIT is a general method for solving problems involving layered media by replacing them through image sources located in complex space. The main emphasis of the monograph is not on specific results but methods of analysis. The work will interest research-level electromagnetic physicists and engineers, and applied mathematicians.
Electromagnetics and Calculation of Fields

Author: Nathan Ida
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The present text is intended as an introduction to electromagnetics and computation of electromagnetic fields. While many texts on electromagnetics exist, the subject of computation of electromagnetic fields is nonnally not treated or is treated in a number of idealized examples, with the main emphasis on development of theoretical relations. "Why another book on Electromagnetics?" This is perhaps the first question the reader may ask when opening this book. It is a valid question, because among the many books on Electromagnetics some are excellent. We have two answers to this question, answers that have motivated the writing of this book. The first concerns the method of presentation of Electromagnetism. Generally, in classical books the material is presented in the following sequence: electrostatics, magnetostatics, magnetodynamics, and wave propagation, using integral fonns of the field equations. As a primary effect of this presentation, the reader is led to think that the knowledge of this science is synonymous to memorizing dozens offonnulas. Additionally, an impression that there is no finn connection between these equations lingers in the reader's mind since at each step new postulates are added, seemingly unrelated to previous material. Our opinion is, and we shall try to convey this to the reader, that the Electromagnetic formalism is extremely simple and based on very few equations. They are the four "Maxwell equations" which include practically all the existent relationships between the electromagnetic quantities. The only additional relationships that need be considered is the Lorentz force and the material constitutive relations.
Theory and Computation of Electromagnetic Fields

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.