Fault Tolerant Parallel And Distributed Systems

Download Fault Tolerant Parallel And Distributed Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fault Tolerant Parallel And Distributed Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fault-Tolerant Parallel and Distributed Systems

Author: Dimiter R. Avresky
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The most important use of computing in the future will be in the context of the global "digital convergence" where everything becomes digital and every thing is inter-networked. The application will be dominated by storage, search, retrieval, analysis, exchange and updating of information in a wide variety of forms. Heavy demands will be placed on systems by many simultaneous re quests. And, fundamentally, all this shall be delivered at much higher levels of dependability, integrity and security. Increasingly, large parallel computing systems and networks are providing unique challenges to industry and academia in dependable computing, espe cially because of the higher failure rates intrinsic to these systems. The chal lenge in the last part of this decade is to build a systems that is both inexpensive and highly available. A machine cluster built of commodity hardware parts, with each node run ning an OS instance and a set of applications extended to be fault resilient can satisfy the new stringent high-availability requirements. The focus of this book is to present recent techniques and methods for im plementing fault-tolerant parallel and distributed computing systems. Section I, Fault-Tolerant Protocols, considers basic techniques for achieving fault-tolerance in communication protocols for distributed systems, including synchronous and asynchronous group communication, static total causal order ing protocols, and fail-aware datagram service that supports communications by time.
Distributed System Design

Future requirements for computing speed, system reliability, and cost-effectiveness entail the development of alternative computers to replace the traditional von Neumann organization. As computing networks come into being, one of the latest dreams is now possible - distributed computing. Distributed computing brings transparent access to as much computer power and data as the user needs for accomplishing any given task - simultaneously achieving high performance and reliability. The subject of distributed computing is diverse, and many researchers are investigating various issues concerning the structure of hardware and the design of distributed software. Distributed System Design defines a distributed system as one that looks to its users like an ordinary system, but runs on a set of autonomous processing elements (PEs) where each PE has a separate physical memory space and the message transmission delay is not negligible. With close cooperation among these PEs, the system supports an arbitrary number of processes and dynamic extensions. Distributed System Design outlines the main motivations for building a distributed system, including: inherently distributed applications performance/cost resource sharing flexibility and extendibility availability and fault tolerance scalability Presenting basic concepts, problems, and possible solutions, this reference serves graduate students in distributed system design as well as computer professionals analyzing and designing distributed/open/parallel systems. Chapters discuss: the scope of distributed computing systems general distributed programming languages and a CSP-like distributed control description language (DCDL) expressing parallelism, interprocess communication and synchronization, and fault-tolerant design two approaches describing a distributed system: the time-space view and the interleaving view mutual exclusion and related issues, including election, bidding, and self-stabilization prevention and detection of deadlock reliability, safety, and security as well as various methods of handling node, communication, Byzantine, and software faults efficient interprocessor communication mechanisms as well as these mechanisms without specific constraints, such as adaptiveness, deadlock-freedom, and fault-tolerance virtual channels and virtual networks load distribution problems synchronization of access to shared data while supporting a high degree of concurrency