Fault Tolerant Control Schemes Using Integral Sliding Modes


Download Fault Tolerant Control Schemes Using Integral Sliding Modes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fault Tolerant Control Schemes Using Integral Sliding Modes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Fault Tolerant Control Schemes Using Integral Sliding Modes


Fault Tolerant Control Schemes Using Integral Sliding Modes

Author: Mirza Tariq Hamayun

language: en

Publisher: Springer

Release Date: 2016-04-29


DOWNLOAD





The key attribute of a Fault Tolerant Control (FTC) system is its ability to maintain overall system stability and acceptable performance in the face of faults and failures within the feedback system. In this book Integral Sliding Mode (ISM) Control Allocation (CA) schemes for FTC are described, which have the potential to maintain close to nominal fault-free performance (for the entire system response), in the face of actuator faults and even complete failures of certain actuators. Broadly an ISM controller based around a model of the plant with the aim of creating a nonlinear fault tolerant feedback controller whose closed-loop performance is established during the design process. The second approach involves retro-fitting an ISM scheme to an existing feedback controller to introduce fault tolerance. This may be advantageous from an industrial perspective, because fault tolerance can be introduced without changing the existing control loops. A high fidelity benchmark model of a large transport aircraft is used to demonstrate the efficacy of the FTC schemes. In particular a scheme based on an LPV representation has been implemented and tested on a motion flight simulator.

Integral Sliding Mode Fault Tolerant Control Schemes with Control Allocation


Integral Sliding Mode Fault Tolerant Control Schemes with Control Allocation

Author: Mirza Tariq Hamayun

language: en

Publisher:

Release Date: 2013


DOWNLOAD





The key attribute of a Fault Tolerant Control (FTC) system is to maintain overall system stability and acceptable performance in the face of faults and failures within the system. In this thesis new integral sliding mode (ISM) control allocation schemes for FTC are proposed, which have the potential to maintain the nominal fault free performance for the entire system response, in the face of actuator faults and even complete failures of certain actuators. The incorporation of ISM within a control allocation framework uses the measured or estimated values of the actuator effectiveness levels to redistribute the control effort among the healthy actuators to maintain closed-loop stability. This combination allows one controller to be used in both fault free as well as in fault or failure situations. A fault tolerant control allocation scheme which relies on an a posteri approach, building on an existing state feedback controller designed using only the primary actuators, is also proposed. Retro-fitting of an ISM scheme to an existing feedback controller is advantageous from an industrial perspective, because fault tolerance can be introduced without changing the existing control loops. To deal with a wider range of operating conditions, the fault tolerant features of ISM are also extended to linear parameter varying systems. A FTC scheme considering only the availability of measured system outputs is also proposed, where now the feedback controller design is based on the estimated states. In each of the ISM fault tolerant schemes proposed, a rigorous closed-loop analysis is carried out to ensure the stability of the sliding motion in the face of faults or failures. A high fidelity benchmark model of a large transport aircraft is used to demonstrate the efficacy of the new FTC schemes.

Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications


Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications

Author: Shihua Li

language: en

Publisher: Springer

Release Date: 2017-08-10


DOWNLOAD





This book reflects the latest developments in variable structure systems (VSS) and sliding mode control (SMC), highlighting advances in various branches of the VSS/SMC field, e.g., from conventional SMC to high-order SMC, from the continuous-time domain to the discrete-time domain, from theories to applications, etc. The book consists of three parts and 16 chapters: in the first part, new VSS/SMC algorithms are proposed and their properties are analyzed, while the second focuses on the use of VSS/SMC techniques to solve a variety of control problems; the third part examines the applications of VSS/SMC to real-time systems. The book introduces postgraduates and researchers to the state-of-the-art in VSS/SMC field, including the theory, methodology, and applications. Relative academic disciplines include Automation, Mathematics, Electrical Engineering, Mechanical Engineering, Instrument Science and Engineering, Electronic Engineering, Computer Science and Technology, Transportation Engineering, Energy and Power Engineering, etc.