Fault Tolerant Agreement In Synchronous Message Passing Systems

Download Fault Tolerant Agreement In Synchronous Message Passing Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Fault Tolerant Agreement In Synchronous Message Passing Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Fault-tolerant Agreement in Synchronous Message-passing Systems

Understanding distributed computing is not an easy task. This is due to the many facets of uncertainty one has to cope with and master in order to produce correct distributed software. A previous book Communication and Agreement Abstraction for Fault-tolerant Asynchronous Distributed Systems (published by Morgan & Claypool, 2010) was devoted to the problems created by crash failures in asynchronous message-passing systems. The present book focuses on the way to cope with the uncertainty created by process failures (crash, omission failures and Byzantine behavior) in synchronous message-passing systems (i.e., systems whose progress is governed by the passage of time). To that end, the book considers fundamental problems that distributed synchronous processes have to solve. These fundamental problems concern agreement among processes (if processes are unable to agree in one way or another in presence of failures, no non-trivial problem can be solved). They are consensus, interactive consistency, k-set agreement and non-blocking atomic commit. Being able to solve these basic problems efficiently with provable guarantees allows applications designers to give a precise meaning to the words ""cooperate"" and ""agree"" despite failures, and write distributed synchronous programs with properties that can be stated and proved. Hence, the aim of the book is to present a comprehensive view of agreement problems, algorithms that solve them and associated computability bounds in synchronous message-passing distributed systems. Table of Contents: List of Figures / Synchronous Model, Failure Models, and Agreement Problems / Consensus and Interactive Consistency in the Crash Failure Model / Expedite Decision in the Crash Failure Model / Simultaneous Consensus Despite Crash Failures / From Consensus to k-Set Agreement / Non-Blocking Atomic Commit in Presence of Crash Failures / k-Set Agreement Despite Omission Failures / Consensus Despite Byzantine Failures / Byzantine Consensus in Enriched Models
Fault-Tolerant Message-Passing Distributed Systems

This book presents the most important fault-tolerant distributed programming abstractions and their associated distributed algorithms, in particular in terms of reliable communication and agreement, which lie at the heart of nearly all distributed applications. These programming abstractions, distributed objects or services, allow software designers and programmers to cope with asynchrony and the most important types of failures such as process crashes, message losses, and malicious behaviors of computing entities, widely known under the term "Byzantine fault-tolerance". The author introduces these notions in an incremental manner, starting from a clear specification, followed by algorithms which are first described intuitively and then proved correct. The book also presents impossibility results in classic distributed computing models, along with strategies, mainly failure detectors and randomization, that allow us to enrich these models. In this sense, the book constitutes an introduction to the science of distributed computing, with applications in all domains of distributed systems, such as cloud computing and blockchains. Each chapter comes with exercises and bibliographic notes to help the reader approach, understand, and master the fascinating field of fault-tolerant distributed computing.
Stabilization, Safety, and Security of Distributed Systems

Author: Xavier Défago
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-09-23
This book constitutes the proceedings of the 13th International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS 2011, held in Grenoble, France, in October 2011. The 29 papers presented were carefully reviewed and selected from 79 submissions. They cover the following areas: ad-hoc, sensor, and peer-to-peer networks; safety and verification; security; self-organizing and autonomic systems; and self-stabilization.