Face Image Analysis With Convolutional Neural Networks

Download Face Image Analysis With Convolutional Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Face Image Analysis With Convolutional Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Face Image Analysis with Convolutional Neural Networks

Doctoral Thesis / Dissertation from the year 2008 in the subject Computer Science - Applied, grade: 1, University of Freiburg (Lehrstuhl für Mustererkennung und Bildverarbeitung), language: English, abstract: In this work, we present the problem of automatic appearance-based facial analysis with machine learning techniques and describe common specific sub-problems like face detection, facial feature detection and face recognition which are the crucial parts of many applications in the context of indexation, surveillance, access-control or human-computer interaction. To tackle this problem, we particularly focus on a technique called Convolutional Neural Network (CNN) which is inspired by biological evidence found in the visual cortex of mammalian brains and which has already been applied to many different classi fication problems. Existing CNN-based methods, like the face detection system proposed by Garcia and Delakis, show that this can be a very effective, efficient and robust approach to non-linear image processing tasks. An important step in many automatic facial analysis applications, e.g. face recognition, is face alignment which tries to translate, scale and rotate the face image such that specific facial features are roughly at predefined positions in the image. We propose an efficient approach to this problem using CNNs and experimentally show its very good performance on difficult test images. We further present a CNN-based method for automatic facial feature detection. The proposed system employs a hierarchical procedure which first roughly localizes the eyes, the nose and the mouth and then refines the result by detecting 10 different facial feature points. The detection rate of this method is 96% for the AR database and 87% for the BioID database tolerating an error of 10% of the inter-ocular distance. Finally, we propose a novel face recognition approach based on a specific CNN architecture learning a non-linear mapping of the image space into a lower-dimensional sub-space where the different classes are more easily separable. We applied this method to several public face databases and obtained better recognition rates than with classical face recognition approaches based on PCA or LDA. We also present a CNN-based method for the binary classification problem of gender recognition with face images and achieve a state-of-the-art accuracy. The results presented in this work show that CNNs perform very well on various facial image processing tasks, such as face alignment, facial feature detection and face recognition and clearly demonstrate that the CNN technique is a versatile, efficient and robust approach for facial image analysis.
Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments

Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students.
Deep Learning-Based Face Analytics

This book provides an overview of different deep learning-based methods for face recognition and related problems. Specifically, the authors present methods based on autoencoders, restricted Boltzmann machines, and deep convolutional neural networks for face detection, localization, tracking, recognition, etc. The authors also discuss merits and drawbacks of available approaches and identifies promising avenues of research in this rapidly evolving field. Even though there have been a number of different approaches proposed in the literature for face recognition based on deep learning methods, there is not a single book available in the literature that gives a complete overview of these methods. The proposed book captures the state of the art in face recognition using various deep learning methods, and it covers a variety of different topics related to face recognition. This book is aimed at graduate students studying electrical engineering and/or computer science. Biometrics is a course that is widely offered at both undergraduate and graduate levels at many institutions around the world: This book can be used as a textbook for teaching topics related to face recognition. In addition, the work is beneficial to practitioners in industry who are working on biometrics-related problems. The prerequisites for optimal use are the basic knowledge of pattern recognition, machine learning, probability theory, and linear algebra.