Extremes In Random Fields

Download Extremes In Random Fields PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Extremes In Random Fields book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Extremes in Random Fields

Presents a useful new technique for analyzing the extreme-value behaviour of random fields Modern science typically involves the analysis of increasingly complex data. The extreme values that emerge in the statistical analysis of complex data are often of particular interest. This book focuses on the analytical approximations of the statistical significance of extreme values. Several relatively complex applications of the technique to problems that emerge in practical situations are presented. All the examples are difficult to analyze using classical methods, and as a result, the author presents a novel technique, designed to be more accessible to the user. Extreme value analysis is widely applied in areas such as operational research, bioinformatics, computer science, finance and many other disciplines. This book will be useful for scientists, engineers and advanced graduate students who need to develop their own statistical tools for the analysis of their data. Whilst this book may not provide the reader with the specific answer it will inspire them to rethink their problem in the context of random fields, apply the method, and produce a solution.
Extremes in Random Fields

Presents a useful new technique for analyzing the extreme-value behaviour of random fields Modern science typically involves the analysis of increasingly complex data. The extreme values that emerge in the statistical analysis of complex data are often of particular interest. This book focuses on the analytical approximations of the statistical significance of extreme values. Several relatively complex applications of the technique to problems that emerge in practical situations are presented. All the examples are difficult to analyze using classical methods, and as a result, the author presents a novel technique, designed to be more accessible to the user. Extreme value analysis is widely applied in areas such as operational research, bioinformatics, computer science, finance and many other disciplines. This book will be useful for scientists, engineers and advanced graduate students who need to develop their own statistical tools for the analysis of their data. Whilst this book may not provide the reader with the specific answer it will inspire them to rethink their problem in the context of random fields, apply the method, and produce a solution.
Stationary Sequences and Random Fields

Author: Murray Rosenblatt
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This book has a dual purpose. One of these is to present material which selec tively will be appropriate for a quarter or semester course in time series analysis and which will cover both the finite parameter and spectral approach. The second object is the presentation of topics of current research interest and some open questions. I mention these now. In particular, there is a discussion in Chapter III of the types of limit theorems that will imply asymptotic nor mality for covariance estimates and smoothings of the periodogram. This dis cussion allows one to get results on the asymptotic distribution of finite para meter estimates that are broader than those usually given in the literature in Chapter IV. A derivation of the asymptotic distribution for spectral (second order) estimates is given under an assumption of strong mixing in Chapter V. A discussion of higher order cumulant spectra and their large sample properties under appropriate moment conditions follows in Chapter VI. Probability density, conditional probability density and regression estimates are considered in Chapter VII under conditions of short range dependence. Chapter VIII deals with a number of topics. At first estimates for the structure function of a large class of non-Gaussian linear processes are constructed. One can determine much more about this structure or transfer function in the non-Gaussian case than one can for Gaussian processes. In particular, one can determine almost all the phase information.