Exploring The Quantum


Download Exploring The Quantum PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Exploring The Quantum book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Exploring the Quantum


Exploring the Quantum

Author: Serge Haroche

language: en

Publisher: OUP Oxford

Release Date: 2006-08-11


DOWNLOAD





The counter-intuitive aspects of quantum physics have been long illustrated by thought experiments, from Einstein's photon box to Schrödinger's cat. These experiments have now become real, with single particles - electrons, atoms, or photons - directly unveiling the strange features of the quantum. State superpositions, entanglement and complementarity define a novel quantum logic which can be harnessed for information processing, raising great hopes for applications. This book describes a class of such thought experiments made real. Juggling with atoms and photons confined in cavities, ions or cold atoms in traps, is here an incentive to shed a new light on the basic concepts of quantum physics. Measurement processes and decoherence at the quantum-classical boundary are highlighted. This volume, which combines theory and experiments, will be of interest to students in quantum physics, teachers seeking illustrations for their lectures and new problem sets, researchers in quantum optics and quantum information.

Exploring Quantum Mechanics


Exploring Quantum Mechanics

Author: Victor Galitski

language: en

Publisher: OUP Oxford

Release Date: 2013-02-28


DOWNLOAD





A series of seminal technological revolutions has led to a new generation of electronic devices miniaturized to such tiny scales where the strange laws of quantum physics come into play. There is no doubt that, unlike scientists and engineers of the past, technology leaders of the future will have to rely on quantum mechanics in their everyday work. This makes teaching and learning the subject of paramount importance for further progress. Mastering quantum physics is a very non-trivial task and its deep understanding can only be achieved through working out real-life problems and examples. It is notoriously difficult to come up with new quantum-mechanical problems that would be solvable with a pencil and paper, and within a finite amount of time. This book remarkably presents some 700+ original problems in quantum mechanics together with detailed solutions covering nearly 1000 pages on all aspects of quantum science. The material is largely new to the English-speaking audience. The problems have been collected over about 60 years, first by the lead author, the late Prof. Victor Galitski, Sr. Over the years, new problems were added and the material polished by Prof. Boris Karnakov. Finally, Prof. Victor Galitski, Jr., has extended the material with new problems particularly relevant to modern science.

Entanglement, Information, and the Interpretation of Quantum Mechanics


Entanglement, Information, and the Interpretation of Quantum Mechanics

Author: Gregg Jaeger

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-06-12


DOWNLOAD





Entanglement was initially thought by some to be an oddity restricted to the realm of thought experiments. However, Bell’s inequality delimiting local - havior and the experimental demonstration of its violation more than 25 years ago made it entirely clear that non-local properties of pure quantum states are more than an intellectual curiosity. Entanglement and non-locality are now understood to ?gure prominently in the microphysical world, a realm into which technology is rapidly hurtling. Information theory is also increasingly recognized by physicists and philosophers as intimately related to the foun- tions of mechanics. The clearest indicator of this relationship is that between quantum information and entanglement. To some degree, a deep relationship between information and mechanics in the quantum context was already there to be seen upon the introduction by Max Born and Wolfgang Pauli of the idea that the essence of pure quantum states lies in their provision of probabilities regarding the behavior of quantum systems, via what has come to be known as the Born rule. The signi?cance of the relationship between mechanics and information became even clearer with Leo Szilard’s analysis of James Clerk Maxwell’s infamous demon thought experiment. Here, in addition to examining both entanglement and quantum infor- tion and their relationship, I endeavor to critically assess the in?uence of the study of these subjects on the interpretation of quantum theory.