Exploring Quantum Foundations With Single Photons

Download Exploring Quantum Foundations With Single Photons PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Exploring Quantum Foundations With Single Photons book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Exploring Quantum Foundations with Single Photons

This thesis uses high-precision single-photon experiments to shed new light on the role of reality, causality, and uncertainty in quantum mechanics. It provides a comprehensive introduction to the current understanding of quantum foundations and details three influential experiments that significantly advance our understanding of three core aspects of this problem. The first experiment demonstrates that the quantum wavefunction is part of objective reality, if there is any such reality in our world. The second experiment shows that quantum correlations cannot be explained in terms of cause and effect, even when considering superluminal influences between measurement outcomes. The final experiment in this thesis demonstrates a novel uncertainty relation for joint quantum measurements, where the textbook relation does not apply.
Photons

This book focuses on the gradual formation of the concept of ‘light quanta’ or ‘photons’, as they have usually been called in English since 1926. The great number of synonyms that have been used by physicists to denote this concept indicates that there are many different mental models of what ‘light quanta’ are: simply finite, ‘quantized packages of energy’ or ‘bullets of light’? ‘Atoms of light’ or ‘molecules of light’? ‘Light corpuscles’ or ‘quantized waves’? Singularities of the field or spatially extended structures able to interfere? ‘Photons’ in G.N. Lewis’s sense, or as defined by QED, i.e. virtual exchange particles transmitting the electromagnetic force? The term ‘light quantum’ made its first appearance in Albert Einstein’s 1905 paper on a “heuristic point of view” to cope with the photoelectric effect and other forms of interaction of light and matter, but the mental model associated with it has a rich history both before and after 1905. Some of its semantic layers go as far back as Newton and Kepler, some are only fully expressed several decades later, while others initially increased in importance then diminished and finally vanished. In conjunction with these various terms, several mental models of light quanta were developed—six of them are explored more closely in this book. It discusses two historiographic approaches to the problem of concept formation: (a) the author’s own model of conceptual development as a series of semantic accretions and (b) Mark Turner’s model of ‘conceptual blending’. Both of these models are shown to be useful and should be explored further. This is the first historiographically sophisticated history of the fully fledged concept and all of its twelve semantic layers. It systematically combines the history of science with the history of terms and a philosophically inspired history of ideas in conjunction with insights from cognitive science.
Adventures In Quantumland: Exploring Our Unseen Reality

This title is a self-contained follow-up to Understanding Our Unseen Reality: Solving Quantum Riddles (2015). Intended for the general reader but including more advanced material and an appendix of technical references for physics students and researchers, it reviews the basics of the transactional interpretation of quantum mechanics in its newer incarnation as a fully relativistic, realist interpretation of quantum theory, while embarking on further explorations of the implications of quantum theory. This interpretation is applied to new experiments and alleged 'paradoxes' that are found to be fully explicable once various misconceptions are identified.There is currently much disagreement about the meaning of quantum theory, as well as confusion about the implications of various experiments such as 'weak measurements,' 'quantum eraser,' and delayed choice. This book provides a clear way forward, presenting new developments and elaborating a promising interpretational approach that has completely nullified earlier objections (such as the Maudlin objection). It also explains why some prominent competing interpretations, such as 'decoherence' in an Everettian ('Many Worlds') approach, do not work as advertised.Adventures in Quantumland: Exploring Our Unseen Reality offers a fully relativistic interpretation of quantum mechanics with no discontinuity between non-relativistic and relativistic domains and shows how quantum theory allows for free will and for reconciliation of science and spiritual traditions.Related Link(s)