Exploring Modern Regression Methods Using Sas

Download Exploring Modern Regression Methods Using Sas PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Exploring Modern Regression Methods Using Sas book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Discovering Statistics Using SAS

Hot on the heels of the 3rd edition of Andy Field′s award-winning Discovering Statistics Using SPSS comes this brand new version for students using SAS®. Andy has teamed up with a co-author, Jeremy Miles, to adapt the book with all the most up-to-date commands and programming language from SAS® 9.2. If you′re using SAS®, this is the only book on statistics that you will need! The book provides a comprehensive collection of statistical methods, tests and procedures, covering everything you′re likely to need to know for your course, all presented in Andy′s accessible and humourous writing style. Suitable for those new to statistics as well as students on intermediate and more advanced courses, the book walks students through from basic to advanced level concepts, all the while reinforcing knowledge through the use of SAS®. A ′cast of characters′ supports the learning process throughout the book, from providing tips on how to enter data in SAS® properly to testing knowledge covered in chapters interactively, and ′real world′ and invented examples illustrate the concepts and make the techniques come alive. The book′s companion website (see link above) provides students with a wide range of invented and real published research datasets. Lecturers can find multiple choice questions and PowerPoint slides for each chapter to support their teaching.
Data Mining and Exploration

This book introduces both conceptual and procedural aspects of cutting-edge data science methods, such as dynamic data visualization, artificial neural networks, ensemble methods, and text mining. There are at least two unique elements that can set the book apart from its rivals. First, most students in social sciences, engineering, and business took at least one class in introductory statistics before learning data science. However, usually these courses do not discuss the similarities and differences between traditional statistics and modern data science; as a result learners are disoriented by this seemingly drastic paradigm shift. In reaction, some traditionalists reject data science altogether while some beginning data analysts employ data mining tools as a “black box”, without a comprehensive view of the foundational differences between traditional and modern methods (e.g., dichotomous thinking vs. pattern recognition, confirmation vs. exploration, single method vs. triangulation, single sample vs. cross-validation etc.). This book delineates the transition between classical methods and data science (e.g. from p value to Log Worth, from resampling to ensemble methods, from content analysis to text mining etc.). Second, this book aims to widen the learner's horizon by covering a plethora of software tools. When a technician has a hammer, every problem seems to be a nail. By the same token, many textbooks focus on a single software package only, and consequently the learner tends to fit the problem with the tool, but not the other way around. To rectify the situation, a competent analyst should be equipped with a tool set, rather than a single tool. For example, when the analyst works with crucial data in a highly regulated industry, such as pharmaceutical and banking, commercial software modules (e.g., SAS) are indispensable. For a mid-size and small company, open-source packages such as Python would come in handy. If the research goal is to create an executive summary quickly, the logical choice is rapid model comparison. If the analyst would like to explore the data by asking what-if questions, then dynamic graphing in JMP Pro is a better option. This book uses concrete examples to explain the pros and cons of various software applications.