Explanation Based Learning Of Generalized Robot Assembly Plans

Download Explanation Based Learning Of Generalized Robot Assembly Plans PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Explanation Based Learning Of Generalized Robot Assembly Plans book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Explanation-based Learning of Generalized Robot Assembly Plans

This report describes an experiment involving the application of a recently developed machine learning technique, explanation-based learning, to the robot retraining problem. Explanation-based learning permits a system to acquire generalized problem-solving knowledge on the basis of a single observed problem-solving example. The resulting computer program, called ARMS for Acquiring Robotic Manufacturing Schemata, serves as a medium for discussing issues related to this particular type of learning. This work clarifies and extends the corpus of knowledge so that explanation-based learning can be successfully applied to real world problems. From a machine learning perspective, ARMS is one of the more ambitious working explanation-based learning implementations to date. Unlike many other vehicles for machine learning research, the ARMS system operates in a nontrivial domain conveying the flavor of a real robot assembly application. (Keywords: Artificial intelligence; Scenarios).
Machine Learning of Robot Assembly Plans

Author: Alberto Maria Segre
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
The study of artificial intelligence (AI) is indeed a strange pursuit. Unlike most other disciplines, few AI researchers even agree on a mutually acceptable definition of their chosen field of study. Some see AI as a sub field of computer science, others see AI as a computationally oriented branch of psychology or linguistics, while still others see it as a bag of tricks to be applied to an entire spectrum of diverse domains. This lack of unified purpose among the AI community makes this a very exciting time for AI research: new and diverse projects are springing up literally every day. As one might imagine, however, this diversity also leads to genuine difficulties in assessing the significance and validity of AI research. These difficulties are an indication that AI has not yet matured as a science: it is still at the point where people are attempting to lay down (hopefully sound) foundations. Ritchie and Hanna [1] posit the following categorization as an aid in assessing the validity of an AI research endeavor: (1) The project could introduce, in outline, a novel (or partly novel) idea or set of ideas. (2) The project could elaborate the details of some approach. Starting with the kind of idea in (1), the research could criticize it or fill in further details (3) The project could be an AI experiment, where a theory as in (1) and (2) is applied to some domain. Such experiments are usually computer programs that implement a particular theory.
Investigating Explanation-Based Learning

Author: Gerald DeJong
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Explanation-Based Learning (EBL) can generally be viewed as substituting background knowledge for the large training set of exemplars needed by conventional or empirical machine learning systems. The background knowledge is used automatically to construct an explanation of a few training exemplars. The learned concept is generalized directly from this explanation. The first EBL systems of the modern era were Mitchell's LEX2, Silver's LP, and De Jong's KIDNAP natural language system. Two of these systems, Mitchell's and De Jong's, have led to extensive follow-up research in EBL. This book outlines the significant steps in EBL research of the Illinois group under De Jong. This volume describes theoretical research and computer systems that use a broad range of formalisms: schemas, production systems, qualitative reasoning models, non-monotonic logic, situation calculus, and some home-grown ad hoc representations. This has been done consciously to avoid sacrificing the ultimate research significance in favor of the expediency of any particular formalism. The ultimate goal, of course, is to adopt (or devise) the right formalism.