Explainable Artificial Intelligence For Biomedical And Healthcare Applications


Download Explainable Artificial Intelligence For Biomedical And Healthcare Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Explainable Artificial Intelligence For Biomedical And Healthcare Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Explainable Artificial Intelligence for Biomedical and Healthcare Applications


Explainable Artificial Intelligence for Biomedical and Healthcare Applications

Author: Aditya Khamparia

language: en

Publisher: CRC Press

Release Date: 2024-10-09


DOWNLOAD





This reference text helps us understand how the concepts of explainable artificial intelligence (XAI) are used in the medical and healthcare sectors. The text discusses medical robotic systems using XAI and physical devices having autonomous behaviors for medical operations. It explores the usage of XAI for analyzing different types of unique data sets for medical image analysis, medical image registration, medical data synthesis, and information discovery. It covers important topics including XAI for biometric security, genomics, and medical disease diagnosis. This book: • Provides an excellent foundation for the core concepts and principles of explainable AI in biomedical and healthcare applications. • Covers explainable AI for robotics and autonomous systems. • Discusses usage of explainable AI in medical image analysis, medical image registration, and medical data synthesis. • Examines biometrics security-assisted applications and their integration using explainable AI. The text will be useful for graduate students, professionals, and academic researchers in diverse areas such as electrical engineering, electronics and communication engineering, biomedical engineering, and computer science.

Deep Learning in Gaming and Animations


Deep Learning in Gaming and Animations

Author: Vikas Chaudhary

language: en

Publisher: CRC Press

Release Date: 2021-12-07


DOWNLOAD





Over the last decade, progress in deep learning has had a profound and transformational effect on many complex problems, including speech recognition, machine translation, natural language understanding, and computer vision. As a result, computers can now achieve human-competitive performance in a wide range of perception and recognition tasks. Many of these systems are now available to the programmer via a range of so-called cognitive services. More recently, deep reinforcement learning has achieved ground-breaking success in several complex challenges. This book makes an enormous contribution to this beautiful, vibrant area of study: an area that is developing rapidly both in breadth and depth. Deep learning can cope with a broader range of tasks (and perform those tasks to increasing levels of excellence). This book lays a good foundation for the core concepts and principles of deep learning in gaming and animation, walking you through the fundamental ideas with expert ease. This book progresses in a step-by-step manner. It reinforces theory with a full-fledged pedagogy designed to enhance students' understanding and offer them a practical insight into its applications. Also, some chapters introduce and cover novel ideas about how artificial intelligence (AI), deep learning, and machine learning have changed the world in gaming and animation. It gives us the idea that AI can also be applied in gaming, and there are limited textbooks in this area. This book comprehensively addresses all the aspects of AI and deep learning in gaming. Also, each chapter follows a similar structure so that students, teachers, and industry experts can orientate themselves within the text. There are few books in the field of gaming using AI. Deep Learning in Gaming and Animations teaches you how to apply the power of deep learning to build complex reasoning tasks. After being exposed to the foundations of machine and deep learning, you will use Python to build a bot and then teach it the game's rules. This book also focuses on how different technologies have revolutionized gaming and animation with various illustrations.

Artificial Intelligence for Healthcare Applications and Management


Artificial Intelligence for Healthcare Applications and Management

Author: Boris Galitsky

language: en

Publisher: Academic Press

Release Date: 2022-01-13


DOWNLOAD





Artificial Intelligence for Healthcare Applications and Management introduces application domains of various AI algorithms across healthcare management. Instead of discussing AI first and then exploring its applications in healthcare afterward, the authors attack the problems in context directly, in order to accelerate the path of an interested reader toward building industrial-strength healthcare applications. Readers will be introduced to a wide spectrum of AI applications supporting all stages of patient flow in a healthcare facility. The authors explain how AI supports patients throughout a healthcare facility, including diagnosis and treatment recommendations needed to get patients from the point of admission to the point of discharge while maintaining quality, patient safety, and patient/provider satisfaction. AI methods are expected to decrease the burden on physicians, improve the quality of patient care, and decrease overall treatment costs. Current conditions affected by COVID-19 pose new challenges for healthcare management and learning how to apply AI will be important for a broad spectrum of students and mature professionals working in medical informatics. This book focuses on predictive analytics, health text processing, data aggregation, management of patients, and other fields which have all turned out to be bottlenecks for the efficient management of coronavirus patients. - Presents an in-depth exploration of how AI algorithms embedded in scheduling, prediction, automated support, personalization, and diagnostics can improve the efficiency of patient treatment - Investigates explainable AI, including explainable decision support and machine learning, from limited data to back-up clinical decisions, and data analysis - Offers hands-on skills to computer science and medical informatics students to aid them in designing intelligent systems for healthcare - Informs a broad, multidisciplinary audience about a multitude of applications of machine learning and linguistics across various healthcare fields - Introduces medical discourse analysis for a high-level representation of health texts