Explainable Artificial Intelligence A Practical Guide


Download Explainable Artificial Intelligence A Practical Guide PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Explainable Artificial Intelligence A Practical Guide book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Explainable Artificial Intelligence: A Practical Guide


Explainable Artificial Intelligence: A Practical Guide

Author: Parikshit Narendra Mahalle

language: en

Publisher: CRC Press

Release Date: 2024-12-02


DOWNLOAD





This book explores the growing focus on artificial intelligence (AI) systems in both industry and academia. It evaluates and justifies AI applications while enhancing trust in AI outcomes and aiding comprehension of AI feature development. Key topics include an overview of explainable AI, black box model understanding, interpretability techniques, practical XAI applications, and future trends and challenges in XAI. Technical topics discussed in the book include: Explainable AI overview Understanding black box models Techniques for model interpretability Practical applications of XAI Future trends and challenges in XAI

Interpretable Machine Learning


Interpretable Machine Learning

Author: Christoph Molnar

language: en

Publisher: Lulu.com

Release Date: 2020


DOWNLOAD





This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Explainable AI with Python


Explainable AI with Python

Author: Leonida Gianfagna

language: en

Publisher: Springer Nature

Release Date: 2021-04-28


DOWNLOAD





This book provides a full presentation of the current concepts and available techniques to make “machine learning” systems more explainable. The approaches presented can be applied to almost all the current “machine learning” models: linear and logistic regression, deep learning neural networks, natural language processing and image recognition, among the others. Progress in Machine Learning is increasing the use of artificial agents to perform critical tasks previously handled by humans (healthcare, legal and finance, among others). While the principles that guide the design of these agents are understood, most of the current deep-learning models are "opaque" to human understanding. Explainable AI with Python fills the current gap in literature on this emerging topic by taking both a theoretical and a practical perspective, making the reader quickly capable of working with tools and code for Explainable AI. Beginning with examples of what Explainable AI (XAI) is and why it is needed in the field, the book details different approaches to XAI depending on specific context and need. Hands-on work on interpretable models with specific examples leveraging Python are then presented, showing how intrinsic interpretable models can be interpreted and how to produce “human understandable” explanations. Model-agnostic methods for XAI are shown to produce explanations without relying on ML models internals that are “opaque.” Using examples from Computer Vision, the authors then look at explainable models for Deep Learning and prospective methods for the future. Taking a practical perspective, the authors demonstrate how to effectively use ML and XAI in science. The final chapter explains Adversarial Machine Learning and how to do XAI with adversarial examples.