Evolutionary Design Of Intelligent Systems In Modeling Simulation And Control


Download Evolutionary Design Of Intelligent Systems In Modeling Simulation And Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Evolutionary Design Of Intelligent Systems In Modeling Simulation And Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control


Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control

Author: Oscar Castillo

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-10-09


DOWNLOAD





We describe in this book, new methods for evolutionary design of intelligent s- tems using soft computing and their applications in modeling, simulation and c- trol. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and evolutionary algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in four main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of evolutionary design of fuzzy systems in intelligent control, which consists of papers that propose new methods for designing and optimizing intelligent controllers for different applications. The second part c- tains papers with the main theme of evolutionary design of intelligent systems for pattern recognition applications, which are basically papers using evolutionary al- rithms for optimizing modular neural networks with fuzzy systems for response - tegration, for achieving pattern recognition in different applications. The third part contains papers with the themes of models for learning and social simulation, which are papers that apply intelligent systems to the problems of designing learning - jects and social agents. The fourth part contains papers that deal with intelligent s- tems in robotics applications and hardware implementations. In the part of Intelligent Control there are 5 papers that describe different c- tributions on evolutionary optimization of fuzzy systems in intelligent control. The first paper, by Ricardo Martinez-Marroquin et al.

Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization


Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization

Author: Patricia Melin

language: en

Publisher: Springer

Release Date: 2015-06-12


DOWNLOAD





This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents diverse applications of nature-inspired optimization algorithms. The sixth part contains papers describing new optimization algorithms. The seventh part contains papers describing applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. Finally, the eighth part contains papers that present enhancements to meta-heuristics based on fuzzy logic techniques.

Nature-Inspired Design of Hybrid Intelligent Systems


Nature-Inspired Design of Hybrid Intelligent Systems

Author: Patricia Melin

language: en

Publisher: Springer

Release Date: 2016-12-08


DOWNLOAD





This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. The sixth part examines new optimization algorithms and their applications. Lastly, the seventh part is dedicated to the design and application of different hybrid intelligent systems.