Every Planar Map Is Four Colorable

Download Every Planar Map Is Four Colorable PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Every Planar Map Is Four Colorable book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Every Planar Map is Four Colorable

Author: Kenneth I. Appel
language: en
Publisher: American Mathematical Soc.
Release Date: 1989
In this volume, the authors present their 1972 proof of the celebrated Four Color Theorem in a detailed but self-contained exposition accessible to a general mathematical audience. An emended version of the authors' proof of the theorem, the book contains the full text of the supplements and checklists, which originally appeared on microfiche. The thiry-page introduction, intended for nonspecialists, provides some historical background of the theorem and details of the authors' proof. In addition, the authors have added an appendix which treats in much greater detail the argument for situations in which reducible configurations are immersed rather than embedded in triangulations. This result leads to a proof that four coloring can be accomplished in polynomial time.
The Four-Color Theorem

Author: Rudolf Fritsch
language: en
Publisher: Springer Science & Business Media
Release Date: 1998
This elegant little book discusses a famous problem that helped to define the field now known as graph theory: what is the minimum number of colors required to print a map such that no two adjoining countries have the same color, no matter how convoluted their boundaries are. Many famous mathematicians have worked on the problem, but the proof eluded formulation until the 1970s, when it was finally cracked with a brute-force approach using a computer. The Four-Color Theorem begins by discussing the history of the problem up to the new approach given in the 1990s (by Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas). The book then goes into the mathematics, with a detailed discussion of how to convert the originally topological problem into a combinatorial one that is both elementary enough that anyone with a basic knowledge of geometry can follow it and also rigorous enough that a mathematician can read it with satisfaction. The authors discuss the mathematics and point to the philosophical debate that ensued when the proof was announced: just what is a mathematical proof, if it takes a computer to provide one - and is such a thing a proof at all?