Evaluation Of The Repeatability Of The Delta Q Duct Leakage Testing Techniqueincluding Investigation Of Robust Analysis Techniques And Estimates Of Weather Induced Uncertainty


Download Evaluation Of The Repeatability Of The Delta Q Duct Leakage Testing Techniqueincluding Investigation Of Robust Analysis Techniques And Estimates Of Weather Induced Uncertainty PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Evaluation Of The Repeatability Of The Delta Q Duct Leakage Testing Techniqueincluding Investigation Of Robust Analysis Techniques And Estimates Of Weather Induced Uncertainty book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Evaluation of the Repeatability of the Delta Q Duct Leakage Testing TechniqueIncluding Investigation of Robust Analysis Techniques and Estimates of Weather Induced Uncertainty


Evaluation of the Repeatability of the Delta Q Duct Leakage Testing TechniqueIncluding Investigation of Robust Analysis Techniques and Estimates of Weather Induced Uncertainty

Author:

language: en

Publisher:

Release Date: 2008


DOWNLOAD





The DeltaQ test is a method of estimating the air leakage from forced air duct systems. Developed primarily for residential and small commercial applications it uses the changes in blower door test results due to forced air system operation. Previous studies established the principles behind DeltaQ testing, but raised issues of precision of the test, particularly for leaky homes on windy days. Details of the measurement technique are available in an ASTM Standard (ASTM E1554-2007). In order to ease adoption of the test method, this study answers questions regarding the uncertainty due to changing weather during the test (particularly changes in wind speed) and the applicability to low leakage systems. The first question arises because the building envelope air flows and pressures used in the DeltaQ test are influenced by weather induced pressures. Variability in wind induced pressures rather than temperature difference induced pressures dominates this effect because the wind pressures change rapidly over the time period of a test. The second question needs to answered so that DeltaQ testing can be used in programs requiring or giving credit for tight ducts (e.g., California's Building Energy Code (CEC 2005)). DeltaQ modeling biases have been previously investigated in laboratory studies where there was no weather induced changes in envelope flows and pressures. Laboratory work by Andrews (2002) and Walker et al. (2004) found biases of about 0.5% of forced air system blower flow and individual test uncertainty of about 2% of forced air system blower flow. The laboratory tests were repeated by Walker and Dickerhoff (2006 and 2008) using a new ramping technique that continuously varied envelope pressures and air flows rather than taking data at pre-selected pressure stations (as used in ASTM E1554-2003 and other previous studies). The biases and individual test uncertainties for ramping were found to be very close (less than 0.5% of air handler flow) to those found in for the pressure station approach. Walker and Dickerhoff also included estimates of DeltaQ test repeatability based on the results of field tests where two houses were tested multiple times. The two houses were quite leaky (20-25 Air Changes per Hour at 50Pa (0.2 in. water) (ACH50)) and were located in the San Francisco Bay area. One house was tested on a calm day and the other on a very windy day. Results were also presented for two additional houses that were tested by other researchers in Minneapolis, MN and Madison, WI, that had very tight envelopes (1.8 and 2.5 ACH50). These tight houses had internal duct systems and were tested without operating the central blower--sometimes referred to as control tests. The standard deviations between the multiple tests for all four houses were found to be about 1% of the envelope air flow at 50 Pa (0.2 in. water) (Q50) that led to the suggestion of this as a rule of thumb for estimating DeltaQ uncertainty. Because DeltaQ is based on measuring envelope air flows it makes sense for uncertainty to scale with envelope leakage. However, these tests were on a limited data set and one of the objectives of the current study is to increase the number of tested houses. This study focuses on answering two questions: (1) What is the uncertainty associated with changes in weather (primarily wind) conditions during DeltaQ testing? (2) How can these uncertainties be reduced? The first question is addressing issues of repeatability. To study this five houses were tested as many times as possible over a day. Weather data was recorded on-site--including the local windspeed. The result from these five houses were combined with the two Bay Area homes from the previous studies. The variability of the tests (represented by the standard deviation) is the repeatability of the test method for that house under the prevailing weather conditions. Because the testing was performed over a day a wide range of wind speeds was achieved following typical diurnal variations of low wind in the early morning and greatest winds in the late afternoon/early evening. Typically about ten tests were performed in each house. To answer the second question, different data analysis techniques were investigated that looked at averaging techniques, elimination of outliers, limiting leak pressures, etc. in order to minimize the influence of changing wind conditions during the test. The objective was to find a reasonable compromise between test precision and robustness--because many of the changes to the analysis to make the test more robust limit its ability to examine wide ranges of pressures and leakage flows. A secondary goal of this study is to show that DeltaQ uncertainties are acceptable for testing low leakage systems. Therefore houses with low duct leakage were deliberately chosen to be tested.

Reducing Uncertainty for the DeltaQ Duct Leakage Test


Reducing Uncertainty for the DeltaQ Duct Leakage Test

Author:

language: en

Publisher:

Release Date: 2004


DOWNLOAD





The thermal distribution system couples the HVAC components to the building envelope, and shares many properties of the buildings envelope including moisture, conduction and most especially air leakage performance. Duct leakage has a strong influence on air flow rates through building envelopes (usually resulting in much greater flows than those due to natural infiltration) because unbalanced duct air flows and leaks result in building pressurization and depressurization. As a tool to estimate this effect, the DeltaQ duct leakage test has been developed over the past several years as an improvement to existing duct pressurization tests. It focuses on measuring the air leakage flows to outside at operating conditions that are required for envelope infiltration impacts and energy loss calculations for duct systems. The DeltaQ test builds on the standard envelope tightness blower door measurement techniques by repeating the tests with the system air handler off and on. The DeltaQ test requires several assumptions to be made about duct leakage and its interaction with the duct system and building envelope in order to convert the blower door results into duct leakage at system operating conditions. This study examined improvements to the DeltaQ test that account for some of these assumptions using a duct system and building envelope in a test laboratory. The laboratory measurements used a purpose-built test chamber coupled to a duct system typical of forced air systems in US homes. Special duct leaks with controlled air-flow were designed and installed into an airtight duct system. This test apparatus allowed the systematic variation of the duct and envelope leakage and accurate measurement of the duct leakage flows for comparison to DeltaQ test results. This paper will discuss the laboratory test apparatus design, construction and operation, the various analysis techniques applied to the calculation procedure and present estimates of uncertainty in measured duct leakage.

The Delta Q Method of Testing the Air Leakage of Ducts


The Delta Q Method of Testing the Air Leakage of Ducts

Author:

language: en

Publisher:

Release Date: 2002


DOWNLOAD





The DeltaQ test has been developed in order to provide better estimates of forced air system air leakage for use in energy efficiency calculations and for compliance testing of duct systems. The DeltaQ test combines a model of the house and duct system with the results of house pressurization tests with the air handler on and off to determine the duct leakage air flows to outside conditioned space at operating conditions. The key advantage of the DeltaQ test over other methods is that it determines the air leakage flows directly, rather than requiring interpretation of indirect measurements. The results from over 200 field and laboratory tests are presented. The laboratory tests have shown that the DeltaQ repeatability uncertainties are typically 1% or less of system fan flow and that the accuracy of the test is between 1.3% and 2.5% of fan flow (or 13 cfm to 25 cfm (6 to 12 l/s) for this system).


Recent Search