Euclidean And Non Euclidean Geometries Solutions

Download Euclidean And Non Euclidean Geometries Solutions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Euclidean And Non Euclidean Geometries Solutions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Problems and Solutions in Euclidean Geometry

Based on classical principles, this book is intended for a second course in Euclidean geometry and can be used as a refresher. Each chapter covers a different aspect of Euclidean geometry, lists relevant theorems and corollaries, and states and proves many propositions. Includes more than 200 problems, hints, and solutions. 1968 edition.
"Golden" Non-euclidean Geometry, The: Hilbert's Fourth Problem, "Golden" Dynamical Systems, And The Fine-structure Constant

This unique book overturns our ideas about non-Euclidean geometry and the fine-structure constant, and attempts to solve long-standing mathematical problems. It describes a general theory of 'recursive' hyperbolic functions based on the 'Mathematics of Harmony,' and the 'golden,' 'silver,' and other 'metallic' proportions. Then, these theories are used to derive an original solution to Hilbert's Fourth Problem for hyperbolic and spherical geometries. On this journey, the book describes the 'golden' qualitative theory of dynamical systems based on 'metallic' proportions. Finally, it presents a solution to a Millennium Problem by developing the Fibonacci special theory of relativity as an original physical-mathematical solution for the fine-structure constant. It is intended for a wide audience who are interested in the history of mathematics, non-Euclidean geometry, Hilbert's mathematical problems, dynamical systems, and Millennium Problems.See Press Release: Application of the mathematics of harmony - Golden non-Euclidean geometry in modern math
Euclidean, Non-Euclidean, and Transformational Geometry

This undergraduate textbook provides a comprehensive treatment of Euclidean and transformational geometries, supplemented by substantial discussions of topics from various non-Euclidean and less commonly taught geometries, making it ideal for both mathematics majors and pre-service teachers. Emphasis is placed on developing students' deductive reasoning skills as they are guided through proofs, constructions, and solutions to problems. The text frequently emphasizes strategies and heuristics of problem solving including constructing proofs (Where to begin? How to proceed? Which approach is more promising? Are there multiple solutions/proofs? etc.). This approach aims not only to enable students to successfully solve unfamiliar problems on their own, but also to impart a lasting appreciation for mathematics. The text first explores, at a higher level and in much greater depth, topics that are normally taught in high school geometry courses: definitions and axioms, congruence, circles and related concepts, area and the Pythagorean theorem, similarity, isometries and size transformations, and composition of transformations. Constructions and the use of transformations to carry out constructions are emphasized. The text then introduces more advanced topics dealing with non-Euclidean and less commonly taught topics such as inversive, hyperbolic, elliptic, taxicab, fractal, and solid geometries. By examining what happens when one or more of the building blocks of Euclidean geometry are altered, students will gain a deeper understanding of and appreciation for Euclidean concepts. To accommodate students with different levels of experience in the subject, the basic definitions and axioms that form the foundation of Euclidean geometry are covered in Chapter 1. Problem sets are provided after every section in each chapter and include nonroutine problems that students will enjoy exploring. While not necessarily required, the appropriate use of freely available dynamic geometry software and other specialized software referenced in the text is strongly encouraged; this is especially important for visual learners and for forming conjectures and testing hypotheses.