Estimation And Inference Of Change Points In High Dimensional Factor Models

Download Estimation And Inference Of Change Points In High Dimensional Factor Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Estimation And Inference Of Change Points In High Dimensional Factor Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Estimation and Inference of Change Points in High Dimensional Factor Models

In this paper, we consider the estimation of break points in high-dimensional factor models where the unobserved factors are estimated by principal component analysis (PCA). The factor loading matrix is assumed to have a structural break at an unknown time. We establish the conditions under which the least squares (LS) estimator is consistent for the break date. Our consistency result holds for both large and smaller breaks. We also find the LS estimator's asymptotic distribution. Simulation results confirm that the break date can be accurately estimated by the LS even if the breaks are small. In two empirical applications, we implement our method to estimate break points in the U.S. stock market and U.S. macroeconomy, respectively.
Large-dimensional Panel Data Econometrics: Testing, Estimation And Structural Changes

This book aims to fill the gap between panel data econometrics textbooks, and the latest development on 'big data', especially large-dimensional panel data econometrics. It introduces important research questions in large panels, including testing for cross-sectional dependence, estimation of factor-augmented panel data models, structural breaks in panels and group patterns in panels. To tackle these high dimensional issues, some techniques used in Machine Learning approaches are also illustrated. Moreover, the Monte Carlo experiments, and empirical examples are also utilised to show how to implement these new inference methods. Large-Dimensional Panel Data Econometrics: Testing, Estimation and Structural Changes also introduces new research questions and results in recent literature in this field.
Time Series and Wavelet Analysis

Prof. Pedro A. Morettin is a Distinguished Professor of Statistics at the Institute of Mathematics and Statistics of the University of São Paulo (IME-USP), where he has built an academic career spanning almost six decades. His work has had a significant impact on Time Series Analysis and Wavelet Statistical Methods, as exemplified by the papers appearing in this Festschrift, which are authored by renowned researchers in both fields. Besides his long-term commitment to research, Prof. Morettin is very active in mentoring and serving the profession. Moreover, he has written several textbooks, which are still a leading source of knowledge and learning for undergraduate and graduate students, practitioners, and researchers. Divided into two parts, the Festschrift presents a collection of papers that illustrate Prof. Morettin’s broad contributions to Time Series and Econometrics, and to Wavelets. The reader will be able to learn state-of-the-art statistical methodologies, from periodic ARMA models, fractional Brownian motion, and generalized Ornstein-Uhlenbeck processes to spatial models, passing through complex structures designed for high-dimensional data analysis, such as graph and dynamic models. The topics and data features discussed here include high-frequency sampling, fNRIS, forecasting, portfolio apportionment, volatility assessment, dairy production, and inflation, which are relevant to econometrics, medicine, and the food industry. The volume ends with a discussion of several very powerful tools based on wavelets, spectral analysis, dimensionality reduction, self-similarity, scaling, copulas, and other notions.