Ergodic Theoretic Methods In Group Homology

Download Ergodic Theoretic Methods In Group Homology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ergodic Theoretic Methods In Group Homology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Ergodic Theoretic Methods in Group Homology

This book offers a concise introduction to ergodic methods in group homology, with a particular focus on the computation of L2-Betti numbers. Group homology integrates group actions into homological structure. Coefficients based on probability measure preserving actions combine ergodic theory and homology. An example of such an interaction is provided by L2-Betti numbers: these invariants can be understood in terms of group homology with coefficients related to the group von Neumann algebra, via approximation by finite index subgroups, or via dynamical systems. In this way, L2-Betti numbers lead to orbit/measure equivalence invariants and measured group theory helps to compute L2-Betti numbers. Similar methods apply also to compute the rank gradient/cost of groups as well as the simplicial volume of manifolds. This book introduces L2-Betti numbers of groups at an elementary level and then develops the ergodic point of view, emphasising the connection with approximation phenomena for homological gradient invariants of groups and spaces. The text is an extended version of the lecture notes for a minicourse at the MSRI summer graduate school “Random and arithmetic structures in topology” and thus accessible to the graduate or advanced undergraduate students. Many examples and exercises illustrate the material.
Surveys in Combinatorics 2021

Author: Konrad K. Dabrowski
language: en
Publisher: Cambridge University Press
Release Date: 2021-06-24
These nine articles provide up-to-date surveys of topics of contemporary interest in combinatorics.
Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology

Author: Paul Biran
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-02-12
The papers collected in this volume are contributions to the 43rd session of the Seminaire ́ de mathematiques ́ superieures ́ (SMS) on “Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology.” This session took place at the Universite ́ de Montreal ́ in July 2004 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together young researchers from various parts of the world and to present to them some of the most signi cant recent advances in these areas. More than 77 mathematicians from 17 countries followed the 12 series of lectures and participated in the lively exchange of ideas. The lectures covered an ample spectrum of subjects which are re ected in the present volume: Morse theory and related techniques in in nite dim- sional spaces, Floer theory and its recent extensions and generalizations, Morse and Floer theory in relation to string topology, generating functions, structure of the group of Hamiltonian di?eomorphisms and related dynamical problems, applications to robotics and many others. We thank all our main speakers for their stimulating lectures and all p- ticipants for creating a friendly atmosphere during the meeting. We also thank Ms. Diane Belanger ́ , our administrative assistant, for her help with the organi- tion and Mr. Andre ́ Montpetit, our technical editor, for his help in the preparation of the volume.