Entropy Generation Minimization


Download Entropy Generation Minimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Entropy Generation Minimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Entropy Generation Minimization


Entropy Generation Minimization

Author: Adrian Bejan

language: en

Publisher: CRC Press

Release Date: 1995-10-20


DOWNLOAD





This book presents the diverse and rapidly expanding field of Entropy Generation Minimization (EGM), the method of thermodynamic optimization of real devices. The underlying principles of the EGM method - also referred to as "thermodynamic optimization," "thermodynamic design," and "finite time thermodynamics" - are thoroughly discussed, and the method's applications to real devices are clearly illustrated. The EGM field has experienced tremendous growth during the 1980s and 1990s. This book places EGM's growth in perspective by reviewing both sides of the field - engineering and physics. Special emphasis is given to chronology and to the relationship between the more recent work and the pioneering work that outlined the method and the field. Entropy Generation Minimization combines the fundamental principles of thermodynamics, heat transfer, and fluid mechanics. EGM applies these principles to the modeling and optimization of real systems and processes that are characterized by finite size and finite time constraints, and are limited by heat and mass transfer and fluid flow irreversibilities. Entropy Generation Minimization provides a straightforward presentation of the principles of the EGM method, and features examples that elucidate concepts and identify recent EGM advances in engineering and physics. Modern advances include the optimization of storage by melting and solidification; heat exchanger design; power from hot-dry-rock deposits; the on & off operation of defrosting refrigerators and power plants with fouled heat exchangers; the production of ice and other solids; the maximization of power output in simple power plant models with heat transfer irreversibilities; the minimization of refrigerator power input in simple models; and the optimal collection and use of solar energy.

Advances in the Modelling of Thermodynamic Systems


Advances in the Modelling of Thermodynamic Systems

Author: Essefi, Elhoucine

language: en

Publisher: IGI Global

Release Date: 2022-03-25


DOWNLOAD





Thermodynamics is a common field of study involving many different specialties including physics, chemistry, geology, and cosmology. Thermodynamics is incredibly useful for manmade industrial processes related to material studies, renewable energy, and more. It is essential for professionals to stay current with the developments in thermodynamic systems, as thermodynamics proves vital for understanding natural macroprocesses related to geology, areology, and cosmology. Advances in the Modelling of Thermodynamic Systems discusses the recent advances in modeling of thermodynamic systems as well as the state-of-the-art manmade industrial processes and natural processes taking place on Earth and beyond. It reveals an interdisciplinary vision of thermodynamics from the minuscule to the immense. Covering topics such as entropy generation, linear modeling, and statistical analysis, this premier reference source is an essential resource for engineers, chemists, physicists, mechanics, geologists, cosmologists, students and educators of higher education, libraries, researchers, and academicians.

Thermal Design and Optimization


Thermal Design and Optimization

Author: Adrian Bejan

language: en

Publisher: John Wiley & Sons

Release Date: 1995-12-12


DOWNLOAD





A comprehensive and rigorous introduction to thermal system designfrom a contemporary perspective Thermal Design and Optimization offers readers a lucid introductionto the latest methodologies for the design of thermal systems andemphasizes engineering economics, system simulation, andoptimization methods. The methods of exergy analysis, entropygeneration minimization, and thermoeconomics are incorporated in anevolutionary manner. This book is one of the few sources available that addresses therecommendations of the Accreditation Board for Engineering andTechnology for new courses in design engineering. Intended forclassroom use as well as self-study, the text provides a review offundamental concepts, extensive reference lists, end-of-chapterproblem sets, helpful appendices, and a comprehensive case studythat is followed throughout the text. Contents include: * Introduction to Thermal System Design * Thermodynamics, Modeling, and Design Analysis * Exergy Analysis * Heat Transfer, Modeling, and Design Analysis * Applications with Heat and Fluid Flow * Applications with Thermodynamics and Heat and Fluid Flow * Economic Analysis * Thermoeconomic Analysis and Evaluation * Thermoeconomic Optimization Thermal Design and Optimization offers engineering students,practicing engineers, and technical managers a comprehensive andrigorous introduction to thermal system design and optimizationfrom a distinctly contemporary perspective. Unlike traditionalbooks that are largely oriented toward design analysis andcomponents, this forward-thinking book aligns itself with anincreasing number of active designers who believe that moreeffective, system-oriented design methods are needed. Thermal Design and Optimization offers a lucid presentation ofthermodynamics, heat transfer, and fluid mechanics as they areapplied to the design of thermal systems. This book broadens thescope of engineering design by placing a strong emphasis onengineering economics, system simulation, and optimizationtechniques. Opening with a concise review of fundamentals, itdevelops design methods within a framework of industrialapplications that gradually increase in complexity. Theseapplications include, among others, power generation by large andsmall systems, and cryogenic systems for the manufacturing,chemical, and food processing industries. This unique book draws on the best contemporary thinking aboutdesign and design methodology, including discussions of concurrentdesign and quality function deployment. Recent developments basedon the second law of thermodynamics are also included, especiallythe use of exergy analysis, entropy generation minimization, andthermoeconomics. To demonstrate the application of important designprinciples introduced, a single case study involving the design ofa cogeneration system is followed throughout the book. In addition, Thermal Design and Optimization is one of the best newsources available for meeting the recommendations of theAccreditation Board for Engineering and Technology for more designemphasis in engineering curricula. Supported by extensive reference lists, end-of-chapter problemsets, and helpful appendices, this is a superb text for both theclassroom and self-study, and for use in industrial design,development, and research. A detailed solutions manual is availablefrom the publisher.