Enterprise Data Architecture How To Navigate Its Landscape

Download Enterprise Data Architecture How To Navigate Its Landscape PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Enterprise Data Architecture How To Navigate Its Landscape book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Enterprise Data Architecture: How to navigate its landscape

Are you looking to make better use of data captured within your organisation or want to learn more about how Data Architecture can transform your operations? Answering these questions is at the very heart of Navigating the Data Architecture Landscape. By reading this book you will learn how to: Introduce or improve the Data Architecture function of your organisation Enhance your skills in this domain to deliver more from your data. You may be wondering how a book can do this if it knows nothing about where you are now, or where you want to be? It can, because by leveraging its principles you will discover how to create optimised potential routes to achieve your own Data Architectural objectives. Basic building blocks, concepts and models are defined, enabling you to create new or adapt existing frameworks appropriate for any data landscape. Practical tips and suggestions are also detailed throughout, helping you gain immediate improvements from the way you work and enhance the benefits your organisation can derive from its data. So if you are a Data Architect or deal with data in your organisation and want to learn how to transform the positive yield from its data, then this book is a must read for you! “David has been there and dealt with the issues, which is why this book is an outstanding resource for Data Architects and indeed anyone dealing with the serious challenges of an enterprise data landscape.” – Richard Rendell, Technical Services Director, AgeSmart “An essential read for anyone wishing to practically achieve more benefit from data for their organisation within today’s constraints.” – Reem Zahran - Director, Offering Development, IMS Health “This book provides a comprehensive set of tools enabling you to improve the business outcomes from your organisation’s use of data.” – Andrew Rowland, Global Head Database Engineering, UBS This book is an essential read for Data Architects or indeed anyone wanting to improve the benefit that their organisation can derive from its data usage. It does this by providing principles and models that are appropriate to use within any framework, or even the absence of one. The book is designed to be practical and contains many tips and suggestions as well as examples that can be used as the basis for the reader's own Data Architectural definitions. The breadth of the book covers contemporary themes for Data Architecture and the chapters include; Data Modelling, Enterprise Data Models, Data Governance, Master Data Management and Big Data
The Data Model Toolkit

Adopting the latest technological and data related innovations has caused many organisations to realise they don’t have a firm grasp on their basic operational data. This is a problem that Logical Data Models are uniquely qualified to help them solve. The realisation of the need to define a Logical Data Model may be driven by any number of reasons including; trying to link Big Data Analytics to operational data, plunging into Digital Marketing, choosing the best SaaS solution, carrying out a core Data Migration, developing a Data Warehouse, enhancing Data Governance processes, or even just trying to get everyone to agree on their Product specifications! This book will provide you with the skills required to start to answer these and many similar types of questions. It is not written with a focus on IT development, so you don’t need a technical background to get the most from it. But for any professional working in an organisation’s data landscape, this book will provide the skills they need to define high quality and beneficial data models quickly and easily. It does this using a wealth of practical examples, tips and techniques, as well as providing checklists and templates. It is structured into three parts: The Foundations: What are the solid foundations necessary for building effective data models? The Tools: What Tools are required to enable you to specify clear, precise and accurate data model definitions? The Deliverables: What processes will you need to successfully define the models, what will they deliver, and how can we make them beneficial to the organisation? “In this data-rich era, it is even more critical for organisations to answer the question of what their data means and the value it can bring. Those who can, will gain a competitive advantage through their use of data to streamline their operations and energise their strategies. Core to revealing this meaning, is the data model that is now, more than ever, the lynchpin of success. The Data Model Toolkit provides the essential knowledge and skills that will ensure this success.” – Reem Zahran, Global IT Platform Director, TNS “We work with many enterprise customers to help them transform their technology and it always starts with data. The key is a clear definition of their data quality, completeness and governance. This book shows you step by step how to define and use Data Models as powerful tools to define an organisation’s data and maximise its business benefit.” – John Casserly, CEO, Xceed Group
Data Management: a gentle introduction

The overall objective of this book is to show that data management is an exciting and valuable capability that is worth time and effort. More specifically it aims to achieve the following goals: 1. To give a “gentle” introduction to the field of DM by explaining and illustrating its core concepts, based on a mix of theory, practical frameworks such as TOGAF, ArchiMate, and DMBOK, as well as results from real-world assignments. 2. To offer guidance on how to build an effective DM capability in an organization.This is illustrated by various use cases, linked to the previously mentioned theoretical exploration as well as the stories of practitioners in the field. The primary target groups are: busy professionals who “are actively involved with managing data”. The book is also aimed at (Bachelor’s/ Master’s) students with an interest in data management. The book is industry-agnostic and should be applicable in different industries such as government, finance, telecommunications etc. Typical roles for which this book is intended: data governance office/ council, data owners, data stewards, people involved with data governance (data governance board), enterprise architects, data architects, process managers, business analysts and IT analysts. The book is divided into three main parts: theory, practice, and closing remarks. Furthermore, the chapters are as short and to the point as possible and also make a clear distinction between the main text and the examples. If the reader is already familiar with the topic of a chapter, he/she can easily skip it and move on to the next.