Engineering Design And Optimization Of Thermofluid Systems


Download Engineering Design And Optimization Of Thermofluid Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Engineering Design And Optimization Of Thermofluid Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Engineering Design and Optimization of Thermofluid Systems


Engineering Design and Optimization of Thermofluid Systems

Author: David S. K. Ting

language: en

Publisher: John Wiley & Sons

Release Date: 2021-02-17


DOWNLOAD





A practical and accessible introductory textbook that enables engineering students to design and optimize typical thermofluid systems Engineering Design and Optimization of Thermofluid Systems is designed to help students and professionals alike understand the design and optimization techniques used to create complex engineering systems that incorporate heat transfer, thermodynamics, fluid dynamics, and mass transfer. Designed for thermal systems design courses, this comprehensive textbook covers thermofluid theory, practical applications, and established techniques for improved performance, efficiency, and economy of thermofluid systems. Students gain a solid understanding of best practices for the design of pumps, compressors, heat exchangers, HVAC systems, power generation systems, and more. Covering the material using a pragmatic, student-friendly approach, the text begins by introducing design, optimization, and engineering economics—with emphasis on the importance of engineering optimization in maximizing efficiency and minimizing cost. Subsequent chapters review representative thermofluid systems and devices and discuss basic mathematical models for describing thermofluid systems. Moving on to system simulation, students work with the classical calculus method, the Lagrange multiplier, canonical search methods, and geometric programming. Throughout the text, examples and practice problems integrate emerging industry technologies to show students how key concepts are applied in the real world. This well-balanced textbook: Integrates underlying thermofluid principles, the fundamentals of engineering design, and a variety of optimization methods Covers optimization techniques alongside thermofluid system theory Provides readers best practices to follow on-the-job when designing thermofluid systems Contains numerous tables, figures, examples, and problem sets Emphasizing optimization techniques more than any other thermofluid system textbook available, Engineering Design and Optimization of Thermofluid Systems is the ideal textbook for upper-level undergraduate and graduate students and instructors in thermal systems design courses, and a valuable reference for professional mechanical engineers and researchers in the field.

Engineering Design and Optimization of Thermofluid Systems


Engineering Design and Optimization of Thermofluid Systems

Author: David S. K. Ting

language: en

Publisher: John Wiley & Sons

Release Date: 2021-02-17


DOWNLOAD





A practical and accessible introductory textbook that enables engineering students to design and optimize typical thermofluid systems Engineering Design and Optimization of Thermofluid Systems is designed to help students and professionals alike understand the design and optimization techniques used to create complex engineering systems that incorporate heat transfer, thermodynamics, fluid dynamics, and mass transfer. Designed for thermal systems design courses, this comprehensive textbook covers thermofluid theory, practical applications, and established techniques for improved performance, efficiency, and economy of thermofluid systems. Students gain a solid understanding of best practices for the design of pumps, compressors, heat exchangers, HVAC systems, power generation systems, and more. Covering the material using a pragmatic, student-friendly approach, the text begins by introducing design, optimization, and engineering economics—with emphasis on the importance of engineering optimization in maximizing efficiency and minimizing cost. Subsequent chapters review representative thermofluid systems and devices and discuss basic mathematical models for describing thermofluid systems. Moving on to system simulation, students work with the classical calculus method, the Lagrange multiplier, canonical search methods, and geometric programming. Throughout the text, examples and practice problems integrate emerging industry technologies to show students how key concepts are applied in the real world. This well-balanced textbook: Integrates underlying thermofluid principles, the fundamentals of engineering design, and a variety of optimization methods Covers optimization techniques alongside thermofluid system theory Provides readers best practices to follow on-the-job when designing thermofluid systems Contains numerous tables, figures, examples, and problem sets Emphasizing optimization techniques more than any other thermofluid system textbook available, Engineering Design and Optimization of Thermofluid Systems is the ideal textbook for upper-level undergraduate and graduate students and instructors in thermal systems design courses, and a valuable reference for professional mechanical engineers and researchers in the field.

Thermofluid Modeling for Energy Efficiency Applications


Thermofluid Modeling for Energy Efficiency Applications

Author: Mohammad Masud Kamal Khan

language: en

Publisher: Academic Press

Release Date: 2015-09-01


DOWNLOAD





Thermofluid Modeling for Sustainable Energy Applications provides a collection of the most recent, cutting-edge developments in the application of fluid mechanics modeling to energy systems and energy efficient technology. Each chapter introduces relevant theories alongside detailed, real-life case studies that demonstrate the value of thermofluid modeling and simulation as an integral part of the engineering process. Research problems and modeling solutions across a range of energy efficiency scenarios are presented by experts, helping users build a sustainable engineering knowledge base. The text offers novel examples of the use of computation fluid dynamics in relation to hot topics, including passive air cooling and thermal storage. It is a valuable resource for academics, engineers, and students undertaking research in thermal engineering. - Includes contributions from experts in energy efficiency modeling across a range of engineering fields - Places thermofluid modeling and simulation at the center of engineering design and development, with theory supported by detailed, real-life case studies - Features hot topics in energy and sustainability engineering, including thermal storage and passive air cooling - Provides a valuable resource for academics, engineers, and students undertaking research in thermal engineering