Energy Management Of Distributed Generation Systems

Download Energy Management Of Distributed Generation Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Energy Management Of Distributed Generation Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Energy Management of Distributed Generation Systems

Author: Lucian Mihet-Popa
language: en
Publisher: BoD – Books on Demand
Release Date: 2016-07-13
The book contains 10 chapters, and it is divided into four sections. The first section includes three chapters, providing an overview of Energy Management of Distributed Systems. It outlines typical concepts, such as Demand-Side Management, Demand Response, Distributed, and Hierarchical Control for Smart Micro-Grids. The second section contains three chapters and presents different control algorithms, software architectures, and simulation tools dedicated to Energy Management Systems. In the third section, the importance and the role of energy storage technology in a Distribution System, describing and comparing different types of energy storage systems, is shown. The fourth section shows how to identify and address potential threats for a Home Energy Management System. Finally, the fifth section discusses about Economical Optimization of Operational Cost for Micro-Grids, pointing out the effect of renewable energy sources, active loads, and energy storage systems on economic operation.
Distributed Energy Management of Electrical Power Systems

Go in-depth with this comprehensive discussion of distributed energy management Distributed Energy Management of Electrical Power Systems provides the most complete analysis of fully distributed control approaches and their applications for electric power systems available today. Authored by four respected leaders in the field, the book covers the technical aspects of control, operation management, and optimization of electric power systems. In each chapter, the book covers the foundations and fundamentals of the topic under discussion. It then moves on to more advanced applications. Topics reviewed in the book include: System-level coordinated control Optimization of active and reactive power in power grids The coordinated control of distributed generation, elastic load and energy storage systems Distributed Energy Management incorporates discussions of emerging and future technologies and their potential effects on electrical power systems. The increased impact of renewable energy sources is also covered. Perfect for industry practitioners and graduate students in the field of power systems, Distributed Energy Management remains the leading reference for anyone with an interest in its fascinating subject matter.
Control and Optimization of Distributed Generation Systems

This text is an introduction to the use of control in distributed power generation. It shows the reader how reliable control can be achieved so as to realize the potential of small networks of diverse energy sources, either singly or in coordination, for meeting concerns of energy cost, energy security and environmental protection. The book demonstrates how such microgrids, interconnecting groups of generating units and loads within a local area, can be an effective means of balancing electrical supply and demand. It takes advantage of the ability to connect and disconnect microgrids from the main body of the power grid to give flexibility in response to special events, planned or unplanned. In order to capture the main opportunities for expanding the power grid and to present the plethora of associated open problems in control theory Control and Optimization of Distributed Generation Systems is organized to treat three key themes, namely: system architecture and integration; modelling and analysis; and communications and control. Each chapter makes use of examples and simulations and appropriate problems to help the reader study. Tools helpful to the reader in accessing the mathematical analysis presented within the main body of the book are given in an appendix. Control and Optimization of Distributed Generation Systems will enable readers new to the field of distributed power generation and networked control, whether experienced academic migrating from another field or graduate student beginning a research career, to familiarize themselves with the important points of the control and regulation of microgrids. It will also be useful for practising power engineers wishing to keep abreast of changes in power grids necessitated by the diversification of generating methods.