Energy Limits In Computation

Download Energy Limits In Computation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Energy Limits In Computation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Energy Limits in Computation

This book is a single-source reference to the issues involved in the Landauer principle, which has gained new prominence recently, due to the large amount of heat generated by today’s computers. If Landauer’s principle is correct, there may be ways to build computers that dissipate far less power (corresponding to heat generated) than today’s computers. This book brings together all sides of the discussions regarding Landauer’s principle, both theoretical and experimental, empowering readers to gain better understanding of dissipation in computation, and the limits if any to progress in computation related to energy dissipation. It represents the best and most thorough examination of the important issue of Landauer’s principle that is available in one volume. Provides an in-depth investigation of the Landauer principle and how it relates to the possible existence of lower bounds on dissipation in computation; Gathers together both sides of the discussion: those who agree with Landauer and his conclusions, and those who think that Landauer was not correct, offering fresh perspective on the issues in the new light of experiments; Offers insight into the future of silicon CMOS and the limits if any to progress in computation related to energy dissipation.
Energy Limits in Computation

This book is a single-source reference to the issues involved in the Landauer principle, which has gained new prominence recently, due to the large amount of heat generated by today's computers. If Landauer's principle is correct, there may be ways to build computers that dissipate far less power (corresponding to heat generated) than today's computers. This book brings together all sides of the discussions regarding Landauer's principle, both theoretical and experimental, empowering readers to gain better understanding of dissipation in computation, and the limits if any to progress in computation related to energy dissipation. It represents the best and most thorough examination of the important issue of Landauer's principle that is available in one volume. Provides an in-depth investigation of the Landauer principle and how it relates to the possible existence of lower bounds on dissipation in computation; Gathers together both sides of the discussion: those who agree with Landauer and his conclusions, and those who think that Landauer was not correct, offering fresh perspective on the issues in the new light of experiments; Offers insight into the future of silicon CMOS and the limits if any to progress in computation related to energy dissipation.
The Physics of Computing

This book presents a self-contained introduction to the physics of computing, by addressing the fundamental underlying principles that involve the act of computing, regardless of the actual machine that is used to compute. Questions like “what is the minimum energy required to perform a computation?”, “what is the ultimate computational speed that a computer can achieve?” or “how long can a memory last”, are addressed here, starting from basic physics principles. The book is intended for physicists, engineers, and computer scientists, and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge in physics and mathematics.