End To End Qos Network Design

Download End To End Qos Network Design PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get End To End Qos Network Design book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
End-to-End QoS Network Design

End-to-End QoS Network Design Quality of Service for Rich-Media & Cloud Networks Second Edition New best practices, technical strategies, and proven designs for maximizing QoS in complex networks This authoritative guide to deploying, managing, and optimizing QoS with Cisco technologies has been thoroughly revamped to reflect the newest applications, best practices, hardware, software, and tools for modern networks. This new edition focuses on complex traffic mixes with increased usage of mobile devices, wireless network access, advanced communications, and video. It reflects the growing heterogeneity of video traffic, including passive streaming video, interactive video, and immersive videoconferences. It also addresses shifting bandwidth constraints and congestion points; improved hardware, software, and tools; and emerging QoS applications in network security. The authors first introduce QoS technologies in high-to-mid-level technical detail, including protocols, tools, and relevant standards. They examine new QoS demands and requirements, identify reasons to reevaluate current QoS designs, and present new strategic design recommendations. Next, drawing on extensive experience, they offer deep technical detail on campus wired and wireless QoS design; next-generation wiring closets; QoS design for data centers, Internet edge, WAN edge, and branches; QoS for IPsec VPNs, and more. Tim Szigeti, CCIE No. 9794 is a Senior Technical Leader in the Cisco System Design Unit. He has specialized in QoS for the past 15 years and authored Cisco TelePresence Fundamentals. Robert Barton, CCIE No. 6660 (R&S and Security), CCDE No. 2013::6 is a Senior Systems Engineer in the Cisco Canada Public Sector Operation. A registered Professional Engineer (P. Eng), he has 15 years of IT experience and is primarily focused on wireless and security architectures. Christina Hattingh spent 13 years as Senior Member of Technical Staff in Unified Communications (UC) in Cisco’s Services Routing Technology Group (SRTG). There, she spoke at Cisco conferences, trained sales staff and partners, authored books, and advised customers. Kenneth Briley, Jr., CCIE No. 9754, is a Technical Lead in the Cisco Network Operating Systems Technology Group. With more than a decade of QoS design/implementation experience, he is currently focused on converging wired and wireless QoS. n Master a proven, step-by-step best-practice approach to successful QoS deployment n Implement Cisco-validated designs related to new and emerging applications n Apply best practices for classification, marking, policing, shaping, markdown, and congestion management/avoidance n Leverage the new Cisco Application Visibility and Control feature-set to perform deep-packet inspection to recognize more than 1000 different applications n Use Medianet architecture elements specific to QoS configuration, monitoring, and control n Optimize QoS in rich-media campus networks using the Cisco Catalyst 3750, Catalyst 4500, and Catalyst 6500 n Design wireless networks to support voice and video using a Cisco centralized or converged access WLAN n Achieve zero packet loss in GE/10GE/40GE/100GE data center networks n Implement QoS virtual access data center designs with the Cisco Nexus 1000V n Optimize QoS at the enterprise customer edge n Achieve extraordinary levels of QoS in service provider edge networks n Utilize new industry standards and QoS technologies, including IETF RFC 4594, IEEE 802.1Q-2005, HQF, and NBAR2 This book is part of the Networking Technology Series from Cisco Press®, which offers networking professionals valuable information for constructing efficient networks, understanding new technologies, and building successful careers.
End-to-end Qos Network Design

Best-practice QoS designs for protecting voice, video, and critical data while mitigating network denial-of-service attacks Understand the service-level requirements of voice, video, and data applications Examine strategic QoS best practices, including Scavenger-class QoS tactics for DoS/worm mitigation Learn about QoS tools and the various interdependencies and caveats of these tools that can impact design considerations Learn how to protect voice, video, and data traffic using various QoS mechanisms Evaluate design recommendations for protecting voice, video, and multiple classes of data while mitigating DoS/worm attacks for the following network infrastructure architectures: campus LAN, private WAN, MPLS VPN, and IPSec VPN Quality of Service (QoS) has already proven itself as the enabling technology for the convergence of voice, video, and data networks. As business needs evolve, so do the demands for QoS. The need to protect critical applications via QoS mechanisms in business networks has escalated over the past few years, primarily due to the increased frequency and sophistication of denial-of-service (DoS) and worm attacks. End-to-End QoS Network Design is a detailed handbook for planning and deploying QoS solutions to address current business needs. This book goes beyond discussing available QoS technologies and considers detailed design examples that illustrate where, when, and how to deploy various QoS features to provide validated and tested solutions for voice, video, and critical data over the LAN, WAN, and VPN. The book starts with a brief background of network infrastructure evolution and the subsequent need for QoS. It then goes on to cover the various QoS features and tools currently available and comments on their evolution and direction. The QoS requirements of voice, interactive and streaming video, and multiple classes of data applications are presented, along with an overview of the nature and effects of various types of DoS and worm attacks. QoS best-practice design principles are introduced to show how QoS mechanisms can be strategically deployed end-to-end to address application requirements while mitigating network attacks. The next section focuses on how these strategic design principles are applied to campus LAN QoS design. Considerations and detailed design recommendations specific to the access, distribution, and core layers of an enterprise campus network are presented. Private WAN QoS design is discussed in the following section, where WAN-specific considerations and detailed QoS designs are presented for leased-lines, Frame Relay, ATM, ATM-to-FR Service Interworking, and ISDN networks. Branch-specific designs include Cisco® SAFE recommendations for using Network-Based Application Recognition (NBAR) for known-worm identification and policing. The final section covers Layer 3 VPN QoS design-for both MPLS and IPSec VPNs. As businesses are migrating to VPNs to meet their wide-area networking needs at lower costs, considerations specific to these topologies are required to be reflected in their customer-edge QoS designs. MPLS VPN QoS design is examined from both the enterprise and service provider's perspectives. Additionally, IPSec VPN QoS designs cover site-to-site and teleworker contexts. Whether you are looking for an introduction to QoS principles and practices or a QoS planning and deployment guide, this book provides you with the expert advice you need to design and implement comprehensive QoS solutions.
Top-down Network Design

A systems analysis approach to enterprise network design Master techniques for checking the health of an existing network to develop a baseline for measuring performance of a new network design Explore solutions for meeting QoS requirements, including ATM traffic management, IETF controlled-load and guaranteed services, IP multicast, and advanced switching, queuing, and routing algorithms Develop network designs that provide the high bandwidth and low delay required for real-time applications such as multimedia, distance learning, and videoconferencing Identify the advantages and disadvantages of various switching and routing protocols, including transparent bridging, Inter-Switch Link (ISL), IEEE 802.1Q, IGRP, EIGRP, OSPF, and BGP4 Effectively incorporate new technologies into enterprise network designs, including VPNs, wireless networking, and IP Telephony Top-Down Network Design, Second Edition, is a practical and comprehensive guide to designing enterprise networks that are reliable, secure, and manageable. Using illustrations and real-world examples, it teaches a systematic method for network design that can be applied to campus LANs, remote-access networks, WAN links, and large-scale internetworks. You will learn to analyze business and technical requirements, examine traffic flow and QoS requirements, and select protocols and technologies based on performance goals. You will also develop an understanding of network performance factors such as network utilization, throughput, accuracy, efficiency, delay, and jitter. Several charts and job aids will help you apply a top-down approach to network design. This Second Edition has been revised to include new and updated material on wireless networks, virtual private networks (VPNs), network security, network redundancy, modularity in network designs, dynamic addressing for IPv4 and IPv6, new network design and management tools, Ethernet scalability options (including 10-Gbps Ethernet, Metro Ethernet, and Long-Reach Ethernet), and networks that carry voice and data traffic. Top-Down Network Design, Second Edition, has a companion website at http://www.topdownbook.com, which includes updates to the book, links to white papers, and supplemental information about design resources. This book is part of the Networking Technology Series from Cisco Press¿ which offers networking professionals valuable information for constructing efficient networks, understanding new technologies, and building successful careers.