Embedded Machine Learning With Microcontrollers

Download Embedded Machine Learning With Microcontrollers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Embedded Machine Learning With Microcontrollers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Embedded Machine Learning with Microcontrollers

This textbook introduces basic embedded machine learning methods by exploring practical applications on STM32 development boards. Covering traditional and neural network-based machine learning methods implemented on microcontrollers, the text is designed for use in courses on microcontrollers, microprocessor systems, and embedded systems. Following the learning by doing approach, the book will enable students to grasp embedded machine learning concepts through real-world examples that will provide them with the design and implementation skills needed for a competitive job market. By utilizing a programming environment that enables students to reach and modify low-level microcontroller properties, the material allows for more control of the developed system. Students will be guided in implementing machine learning methods to be deployed and tested on microcontrollers throughout the book, with the theory behind the implemented methods also emphasized. Sample codes and course slides are available for readers and instructors, and a solutions manual is available to instructors. The book will also be an ideal reference for practicing engineers and electronics hobbyists.
TinyML

Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size
Deep Learning on Microcontrollers

Author: Atul Krishna Gupta
language: en
Publisher: BPB Publications
Release Date: 2023-04-15
A step-by-step guide that will teach you how to deploy TinyML on microcontrollers KEY FEATURES ● Deploy machine learning models on edge devices with ease. ● Leverage pre-built AI models and deploy them without writing any code. ● Create smart and efficient IoT solutions with TinyML. DESCRIPTION TinyML, or Tiny Machine Learning, is used to enable machine learning on resource-constrained devices, such as microcontrollers and embedded systems. If you want to leverage these low-cost, low-power but strangely powerful devices, then this book is for you. This book aims to increase accessibility to TinyML applications, particularly for professionals who lack the resources or expertise to develop and deploy them on microcontroller-based boards. The book starts by giving a brief introduction to Artificial Intelligence, including classical methods for solving complex problems. It also familiarizes you with the different ML model development and deployment tools, libraries, and frameworks suitable for embedded devices and microcontrollers. The book will then help you build an Air gesture digit recognition system using the Arduino Nano RP2040 board and an AI project for recognizing keywords using the Syntiant TinyML board. Lastly, the book summarizes the concepts covered and provides a brief introduction to topics such as zero-shot learning, one-shot learning, federated learning, and MLOps. By the end of the book, you will be able to develop and deploy end-to-end Tiny ML solutions with ease. WHAT YOU WILL LEARN ● Learn how to build a Keyword recognition system using the Syntiant TinyML board. ● Learn how to build an air gesture digit recognition system using the Arduino Nano RP2040. ● Learn how to test and deploy models on Edge Impulse and Arduino IDE. ● Get tips to enhance system-level performance. ● Explore different real-world use cases of TinyML across various industries. WHO THIS BOOK IS FOR The book is for IoT developers, System engineers, Software engineers, Hardware engineers, and professionals who are interested in integrating AI into their work. This book is a valuable resource for Engineering undergraduates who are interested in learning about microcontrollers and IoT devices but may not know where to begin. TABLE OF CONTENTS 1. Introduction to AI 2. Traditional ML Lifecycle 3. TinyML Hardware and Software Platforms 4. End-to-End TinyML Deployment Phases 5. Real World Use Cases 6. Practical Experiments with TinyML 7. Advance Implementation with TinyML Board 8. Continuous Improvement 9. Conclusion