Elliptic Systems Of Phase Transition Type

Download Elliptic Systems Of Phase Transition Type PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Elliptic Systems Of Phase Transition Type book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Elliptic Systems of Phase Transition Type

This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes – non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-Cahn equation, which models coexistence of two phases and is related to minimal surfaces. The 1978 De Giorgi conjecture for the scalar problem was settled in a series of papers: Ghoussoub and Gui (2d), Ambrosio and Cabré (3d), Savin (up to 8d), and del Pino, Kowalczyk and Wei (counterexample for 9d and above). This book extends, in various ways, the Caffarelli-Córdoba density estimates that played a major role in Savin's proof. It also introduces an alternative method for obtaining pointwise estimates. Key features and topics of this self-contained, systematic exposition include: • Resolution of the structure of minimal solutions in the equivariant class, (a) for general point groups, and (b) for general discrete reflection groups, thus establishing the existence of previously unknown lattice solutions. • Preliminary material beginning with the stress-energy tensor, via which monotonicity formulas, and Hamiltonian and Pohozaev identities are developed, including a self-contained exposition of the existence of standing and traveling waves. • Tools that allow the derivation of general properties of minimizers, without any assumptions of symmetry, such as a maximum principle or density and pointwise estimates. • Application of the general tools to equivariant solutions rendering exponential estimates, rigidity theorems and stratification results. This monograph is addressed to readers, beginning from the graduate level, with an interest in any of the following: differential equations – ordinary or partial; nonlinear analysis; the calculus of variations; the relationship of minimal surfaces to diffuse interfaces; or the applied mathematics of materials science.
Modern Problems in PDEs and Applications

Author: Marianna Chatzakou
language: en
Publisher: Springer Nature
Release Date: 2024-07-15
The principal aim of the volume is gathering all the contributions given by the speakers (mini courses) and some of the participants (short talks) of the summer school "Modern Problems in PDEs and Applications" held at the Ghent Analysis and PDE Center from 23 August to 2 September 2023. The school was devoted to the study of new techniques and approaches for solving partial differential equations, which can either be considered or arise from the physical point of view or the mathematical perspective. Both sides are extremely important since theories and methods can be developed independently, aiming to gather each other in a common objective. The aim of the summer school was to progress and advance in the problems considered. Note that real-world problems and their applications are classical study trends in physical or mathematical modelling. The summer school was organised in a friendly atmosphere and synergy, and it was an excellent opportunity to promote and encourage the development of the subject in the community.
Ginzburg-Landau Phase Transition Theory and Superconductivity

The theory of complex Ginzburg-Landau type phase transition and its applica tions to superconductivity and superfluidity has been a topic of great interest to theoretical physicists and has been continuously and persistently studied since the 1950s. Today, there is an abundance of mathematical results spread over numer ous scientific journals. However, before 1992, most of the studies concentrated on formal asymptotics or linear analysis. Only isolated results by Berger, Jaffe and Taubes and some of their colleagues touched the nonlinear aspects in great detail. In 1991, a physics seminar given by Ed Copeland at Sussex University inspired Q. Tang, the co-author of this monograph, to study the subject. Independently in Munich, K.-H. Hoffmann and his collaborators Z. Chen and J. Liang started to work on the topic at the same time. Soon it became clear that at that time, groups of mathematicians at Oxford and Virginia Tech had already studied the subject for a couple of years. They inspired experts in interface phase transition problems and their combined effort established a rigorous mathematical framework for the Ginzburg-Landau system. At the beginning Q. Tang collaborated with C.M. Elliott and H. Matano.