Elements Of Ai Building Ai Answers


Download Elements Of Ai Building Ai Answers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Elements Of Ai Building Ai Answers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Deep Learning for Coders with fastai and PyTorch


Deep Learning for Coders with fastai and PyTorch

Author: Jeremy Howard

language: en

Publisher: O'Reilly Media

Release Date: 2020-06-29


DOWNLOAD





Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Building AI Agents with LLMs, RAG, and Knowledge Graphs


Building AI Agents with LLMs, RAG, and Knowledge Graphs

Author: Salvatore Raieli

language: en

Publisher: Packt Publishing Ltd

Release Date: 2025-07-11


DOWNLOAD





Master LLM fundamentals to advanced techniques like RAG, reinforcement learning, and knowledge graphs to build, deploy, and scale intelligent AI agents that reason, retrieve, and act autonomously Key Features Implement RAG and knowledge graphs for advanced problem-solving Leverage innovative approaches like LangChain to create real-world intelligent systems Integrate large language models, graph databases, and tool use for next-gen AI solutions Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThis AI agents book addresses the challenge of building AI that not only generates text but also grounds its responses in real data and takes action. Authored by AI specialists with deep expertise in drug discovery and systems optimization, this guide empowers you to leverage retrieval-augmented generation (RAG), knowledge graphs, and agent-based architectures to engineer truly intelligent behavior. By combining large language models (LLMs) with up-to-date information retrieval and structured knowledge, you'll create AI agents capable of deeper reasoning and more reliable problem-solving. Inside, you'll find a practical roadmap from concept to implementation. You’ll discover how to connect language models with external data via RAG pipelines for increasing factual accuracy and incorporate knowledge graphs for context-rich reasoning. The chapters will help you build and orchestrate autonomous agents that combine planning, tool use, and knowledge retrieval to achieve complex goals. Concrete Python examples built on popular libraries, along with real-world case studies, reinforce each concept and show you how these techniques come together. By the end of this book, you’ll be well-equipped to build intelligent AI agents that reason, retrieve, and interact dynamically, empowering you to deploy powerful AI solutions across industries.What you will learn Learn how LLMs work, their structure, uses, and limits, and design RAG pipelines to link them to external data Build and query knowledge graphs for structured context and factual grounding Develop AI agents that plan, reason, and use tools to complete tasks Integrate LLMs with external APIs and databases to incorporate live data Apply techniques to minimize hallucinations and ensure accurate outputs Orchestrate multiple agents to solve complex, multi-step problems Optimize prompts, memory, and context handling for long-running tasks Deploy and monitor AI agents in production environments Who this book is for If you are a data scientist or researcher who wants to learn how to create and deploy an AI agent to solve limitless tasks, this book is for you. To get the most out of this book, you should have basic knowledge of Python and Gen AI. This book is also excellent for experienced data scientists who want to explore state-of-the-art developments in LLM and LLM-based applications.

Building AI Applications with ChatGPT APIs


Building AI Applications with ChatGPT APIs

Author: Martin Yanev

language: en

Publisher: Packt Publishing Ltd

Release Date: 2023-09-21


DOWNLOAD





Enhance your application development skills by building a ChatGPT clone, code bug fixer, quiz generator, translation app, email auto-reply, PowerPoint generator, and more in just one read! Key Features Become proficient in building AI applications with ChatGPT, DALL-E, and Whisper Understand how to select the optimal ChatGPT model and fine-tune it for your specific use case Monetize your applications by integrating the ChatGPT API with Stripe Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionCombining ChatGPT APIs with Python opens doors to building extraordinary AI applications. By leveraging these APIs, you can focus on the application logic and user experience, while ChatGPT’s robust NLP capabilities handle the intricacies of human-like text understanding and generation. This book is a guide for beginners to master the ChatGPT, Whisper, and DALL-E APIs by building ten innovative AI projects. These projects offer practical experience in integrating ChatGPT with frameworks and tools such as Flask, Django, Microsoft Office APIs, and PyQt. Throughout this book, you’ll get to grips with performing NLP tasks, building a ChatGPT clone, and creating an AI-driven code bug fixing SaaS application. You’ll also cover speech recognition, text-to-speech functionalities, language translation, and generation of email replies and PowerPoint presentations. This book teaches you how to fine-tune ChatGPT and generate AI art using DALL-E APIs, and then offers insights into selling your apps by integrating ChatGPT API with Stripe. With practical examples available on GitHub, the book gradually progresses from easy to advanced topics, cultivating the expertise required to develop, deploy, and monetize your own groundbreaking applications by harnessing the full potential of ChatGPT APIs.What you will learn Develop a solid foundation in using the ChatGPT API for natural language processing tasks Build, deploy, and capitalize on a variety of desktop and SaaS AI applications Seamlessly integrate ChatGPT with established frameworks such as Flask, Django, and Microsoft Office APIs Channel your creativity by integrating DALL-E APIs to produce stunning AI-generated art within your desktop applications Experience the power of Whisper API's speech recognition and text-to-speech features Discover techniques to optimize ChatGPT models through the process of fine-tuning Who this book is for With best practices, tips, and tricks for building applications using the ChatGPT API, this book is for programmers, entrepreneurs, and software enthusiasts. Python developers interested in AI applications involving ChatGPT, software developers who want to integrate AI technology, and web developers looking to create AI-powered web applications with ChatGPT will also find this book useful. A fundamental understanding of Python programming and experience of working with APIs will help you make the most of this book.