Electronic Devices Circuits And Systems For Biomedical Applications

Download Electronic Devices Circuits And Systems For Biomedical Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Electronic Devices Circuits And Systems For Biomedical Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Electronic Devices, Circuits, and Systems for Biomedical Applications

Author: Suman Lata Tripathi
language: en
Publisher: Academic Press
Release Date: 2021-04-28
Electronic Devices, Circuits, and Systems for Biomedical Applications: Challenges and Intelligent Approaches explains the latest information on the design of new technological solutions for low-power, high-speed efficient biomedical devices, circuits and systems. The book outlines new methods to enhance system performance, provides key parameters to explore the electronic devices and circuit biomedical applications, and discusses innovative materials that improve device performance, even for those with smaller dimensions and lower costs. This book is ideal for graduate students in biomedical engineering and medical informatics, biomedical engineers, medical device designers, and researchers in signal processing. - Presents major design challenges and research potential in biomedical systems - Walks readers through essential concepts in advanced biomedical system design - Focuses on healthcare system design for low power-efficient and highly-secured biomedical electronics
Circuits and Systems for Biomedical Applications

Circuits and Systems for Biomedical Applications-UKCAS 2018 covers several advanced topics in the area of Devices, Analog and Mixed-Signal Circuits and Systems for Biomedical Applications. The fundamental aspects of these topics are discussed, and state-of-the-art developments are presented. The book proceeds the 1st United Kingdom Circuits and Systems (UKCAS 2018) Workshop. It addresses multidisciplinary theme areas such as Biosensing, Memristors, next-generation medical diagnostics, neural-inspired circuits, neural implants, neuro-prostheses, prosthetic hand and neuro-rehabilitation. Having perceived the device and circuit assets for such technologies and knowing what challenges these present for the biomedical scientists and engineers, integrated circuits for addressable biosensing are reviewed in the first chapter. The Second Chapter is harnessing the power of the brain using metaloxide Memristors. The third chapter contains construction of an endoscopic capsule for the diagnostics of dysmotilities in the gastrointestinal track. The next three chapters are on neural interfaces: analogue building blocks of neural inspired circuits are described in the fourth chapter while chapter five focuses on circuits for bio-potential recording from the brain. Networked Integrated circuits and their use in creating advanced implantable stimulation systems will be discussed in chapter six. This topic will be completed by circuits and systems for control of Prosthetic Hands in seventh chapter and genetically enhanced brainimplants for neuro-rehabilitation in chapter eight.
Nanoscale Memristor Device and Circuits Design

Nanoscale Memristor Device and Circuits Design provides theoretical frameworks, including (i) the background of memristors, (ii) physics of memristor and their modeling, (iii) menristive device applications, and (iv) circuit design for security and authentication. The book focuses on a broad aspect of realization of these applications as low cost and reliable devices. This is an important reference that will help materials scientists and engineers understand the production and applications of nanoscale memrister devices. A memristor is a two-terminal memory nanoscale device that stores information in terms of high/low resistance. It can retain information even when the power source is removed, i.e., "non-volatile." In contrast to MOS Transistors (MOST), which are the building blocks of all modern mobile and computing devices, memristors are relatively immune to radiation, as well as parasitic effects, such as capacitance, and can be much more reliable. This is extremely attractive for critical safety applications, such as nuclear and aerospace, where radiation can cause failure in MOST-based systems. - Outlines the major principles of circuit design for nanoelectronic applications - Explores major applications, including memristor-based memories, sensors, solar cells, or memristor-based hardware and software security applications - Assesses the major challenges to manufacturing nanoscale memristor devices at an industrial scale