Electromagnetics In Magnetic Resonance Imaging


Download Electromagnetics In Magnetic Resonance Imaging PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Electromagnetics In Magnetic Resonance Imaging book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Electromagnetics in Magnetic Resonance Imaging


Electromagnetics in Magnetic Resonance Imaging

Author: Christopher M. Collins

language: en

Publisher: Morgan & Claypool Publishers

Release Date: 2016-03-01


DOWNLOAD





In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.

Electromagnetic Analysis and Design in Magnetic Resonance Imaging


Electromagnetic Analysis and Design in Magnetic Resonance Imaging

Author: Jianming Jin

language: en

Publisher: CRC Press

Release Date: 1998-09-29


DOWNLOAD





This book presents a comprehensive treatment of electromagnetic analysis and design of three critical devices for an MRI system - the magnet, gradient coils, and radiofrequency (RF) coils. Electromagnetic Analysis and Design in Magnetic Resonance Imaging is unique in its detailed examination of the analysis and design of the hardware for an MRI system. It takes an engineering perspective to serve the many scientists and engineers in this rapidly expanding field. Chapters present: an introduction to MRI basic concepts of electromagnetics, including Helmholtz and Maxwell coils, inductance calculation, and magnetic fields produced by special cylindrical and spherical surface currents principles for the analysis and design of gradient coils, including discrete wires and the target field method analysis of RF coils based on the equivalent lumped-circuit model as well as an analysis based on the integral equation formulation survey of special purpose RF coils analytical and numerical methods for the analysis of electromagnetic fields in biological objects With the continued, active development of MRI instrumentation, Electromagnetic Analysis and Design in Magnetic Resonance Imaging presents an excellent, logically organized text - an indispensable resource for engineers, physicists, and graduate students working in the field of MRI.

Electromagnetics in Magnetic Resonance Imaging


Electromagnetics in Magnetic Resonance Imaging

Author: Christopher M. Collins

language: en

Publisher:

Release Date: 2016


DOWNLOAD





In the past few decades, magnetic resonance imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, x-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.