Electromagnetic Transient Analysis And Novel Protective Relaying Techniques For Power Transformers

Download Electromagnetic Transient Analysis And Novel Protective Relaying Techniques For Power Transformers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Electromagnetic Transient Analysis And Novel Protective Relaying Techniques For Power Transformers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Electromagnetic Transient Analysis and Novel Protective Relaying Techniques for Power Transformers

An advanced level examination of the latest developments in power transformer protection This book addresses the technical challenges of transformer malfunction analysis as well as protection. One of the current research directions is the malfunction mechanism analysis due to nonlinearity of transformer core and comprehensive countermeasures on improving the performance of transformer differential protection. Here, the authors summarize their research outcomes and present a set of recent research advances in the electromagnetic transient analysis, the application on power transformer protections, and present a more systematic investigation and review in this field. This research area is still progressing, especially with the fast development of Smart Grid. This book is an important addition to the literature and will enhance significant advancement in research. It is a good reference book for researchers in power transformer protection research and a good text book for graduate and undergraduate students in electrical engineering. Chapter headings include: Transformer differential protection principle and existing problem analysis; Malfunction mechanism analysis due to nonlinearity of transformer core; Novel analysis tools on operating characteristics of Transformer differential protection; Novel magnetizing inrush identification schemes; Comprehensive countermeasures on improving the performance of transformer differential protection An advanced level examination of the latest developments in power transformer protection Presents a new and systematic view of power transformer protection, enabling readers to design new models and consider fresher design approaches Offers a set of approaches to optimize the power system from a microeconomic point of view
Advancement in Power Transformer Infrastructure and Digital Protection

This book provides an overview of a power transformer infrastructure and comprehensive digital protection of it. It presents various protective methodologies available to protect the transformer from disturbances by taking care of mal-operation due to external disturbances and providing fine protection to the transformer. Though there are many protection methodologies available in the practice. However, these existing methodologies may mal-operate during external disturbances such as inrush, over-fluxing and short circuits. Hence, further research is needed in addition to the existing methods of protection in terms of more fault prediction accuracy, speedy operation, and lower protection cost with zero error in the detection of faults. The book will be useful reference for practitioners from academia and industrial applications.
Real-Time Electromagnetic Transient Simulation of AC-DC Networks

Author: Venkata Dinavahi
language: en
Publisher: John Wiley & Sons
Release Date: 2021-06-14
Explore a comprehensive and state-of-the-art presentation of real-time electromagnetic transient simulation technology by leaders in the field Real-Time Electromagnetic Transient Simulation of AC-DC Networks delivers a detailed exposition of field programmable gate array (FPGA) hardware based real-time electromagnetic transient (EMT) emulation for all fundamental equipment used in AC-DC power grids. The book focuses specifically on detailed device-level models for their hardware realization in a massively parallel and deeply pipelined manner as well as decomposition techniques for emulating large systems. Each chapter contains fundamental concepts, apparatus models, solution algorithms, and hardware emulation to assist the reader in understanding the material contained within. Case studies are peppered throughout the book, ranging from small didactic test circuits to realistically sized large-scale AC-DC grids. The book also provides introductions to FPGA and hardware-in-the-loop (HIL) emulation procedures, and large-scale networks constructed by the foundational components described in earlier chapters. With a strong focus on high-voltage direct-current power transmission grid applications, Real-Time Electromagnetic Transient Simulation of AC-DC Networks covers both system-level and device-level mathematical models. Readers will also enjoy the inclusion of: A thorough introduction to field programmable gate array technology, including the evolution of FPGAs, technology trends, hardware architectures, and programming tools An exploration of classical power system components, e.g., linear and nonlinear passive power system components, transmission lines, power transformers, rotating machines, and protective relays A comprehensive discussion of power semiconductor switches and converters, i.e., AC-DC and DC-DC converters, and specific power electronic apparatus such as DC circuit breakers An examination of decomposition techniques used at the equipment-level as well as the large-scale system-level for real-time EMT emulation of AC-DC networks Chapters that are supported by simulation results from well-defined test cases and the corresponding system parameters are provided in the Appendix Perfect for graduate students and professional engineers studying or working in electrical power engineering, Real-Time Electromagnetic Transient Simulation of AC-DC Networks will also earn a place in the libraries of simulation specialists, senior modeling and simulation engineers, planning and design engineers, and system studies engineers.