Elastic Wave Propagation In Transversely Isotropic Media


Download Elastic Wave Propagation In Transversely Isotropic Media PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Elastic Wave Propagation In Transversely Isotropic Media book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Elastic wave propagation in transversely isotropic media


Elastic wave propagation in transversely isotropic media

Author: R.C. Payton

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





In this monograph I record those parts of the theory of transverse isotropic elastic wave propagation which lend themselves to an exact treatment, within the framework of linear theory. Emphasis is placed on transient wave motion problems in two- and three-dimensional unbounded and semibounded solids for which explicit results can be obtained, without resort to approximate methods of integration. The mathematical techniques used, many of which appear here in book form for the first time, will be of interest to applied mathematicians, engeneers and scientists whose specialty includes crystal acoustics, crystal optics, magnetogasdynamics, dislocation theory, seismology and fibre wound composites. My interest in the subject of anisotropic wave motion had its origin in the study of small deformations superposed on large deformations of elastic solids. By varying the initial stretch in a homogeneously deformed solid, it is possible to synthesize aniso tropic materials whose elastic parameters vary continuously. The range of the parameter variation is limited by stability considerations in the case of small deformations super posed on large deformation problems and (what is essentially the same thing) by the of hyperbolicity (solids whose parameters allow wave motion) for anisotropic notion solids. The full implication of hyperbolicity for anisotropic elastic solids has never been previously examined, and even now the constraints which it imposes on the elasticity constants have only been examined for the class of transversely isotropic (hexagonal crystals) materials.

Elastic wave propagation in transversely isotropic media


Elastic wave propagation in transversely isotropic media

Author: R.C. Payton

language: en

Publisher: Springer Science & Business Media

Release Date: 1983-10-31


DOWNLOAD





In this monograph I record those parts of the theory of transverse isotropic elastic wave propagation which lend themselves to an exact treatment, within the framework of linear theory. Emphasis is placed on transient wave motion problems in two- and three-dimensional unbounded and semibounded solids for which explicit results can be obtained, without resort to approximate methods of integration. The mathematical techniques used, many of which appear here in book form for the first time, will be of interest to applied mathematicians, engeneers and scientists whose specialty includes crystal acoustics, crystal optics, magnetogasdynamics, dislocation theory, seismology and fibre wound composites. My interest in the subject of anisotropic wave motion had its origin in the study of small deformations superposed on large deformations of elastic solids. By varying the initial stretch in a homogeneously deformed solid, it is possible to synthesize aniso tropic materials whose elastic parameters vary continuously. The range of the parameter variation is limited by stability considerations in the case of small deformations super posed on large deformation problems and (what is essentially the same thing) by the of hyperbolicity (solids whose parameters allow wave motion) for anisotropic notion solids. The full implication of hyperbolicity for anisotropic elastic solids has never been previously examined, and even now the constraints which it imposes on the elasticity constants have only been examined for the class of transversely isotropic (hexagonal crystals) materials.

Elastic Wave Propagation


Elastic Wave Propagation

Author: F. McCarthy

language: en

Publisher: Elsevier

Release Date: 2018-06-20


DOWNLOAD





This volume contains a timely collection of research papers on the latest developments in the ever-increasing use of elastic waves in a variety of contexts. There are reports on wave-propagation in various types of media: in both isotropic and anisotropic bodies; in homogeneous and inhomogeneous media; in media with cracks or inclusions in random media; and in layered composites.The bulk of the papers are concerned with propagation in elastic media, but also included are viscoelastic, thermoelastic and magneto-electroelastic wave propagation, as well as waves in porous and piezo-electric bodies. Consideration is given to propagation in bodies as diverse as stretched elastic strings to surfaces such as thin walled cylinders, and thin films under stress. Applications considered include the determination of the depth of cracks; analysis of ground motions generated by a finite fault in seismology; surface wave spreading on piezo-electric solids; and dynamical stress intensity factors. Most of the papers are theoretical in nature, and many are complemented by numerical studies. Also included are a general survey on experimental techniques, and reports on experimental work.The volume will be of interest to those who do theoretical studies of elastic wave propagation and to those who apply elastic waves whether in seismology, non-destructive testing, the fabrication of devices or underwater acoustics, etc.