Ekeland S Variational Principle For Vector Optimization With Variable Ordering Structure

Download Ekeland S Variational Principle For Vector Optimization With Variable Ordering Structure PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ekeland S Variational Principle For Vector Optimization With Variable Ordering Structure book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Ekeland's Variational Principle for Vector Optimization with Variable Ordering Structure

There are many generalizations of Ekeland's variational principle for vector optimization problems with fixed ordering structures, i.e., ordering cones. These variational principles are useful for deriving optimality conditions, epsilon-Kolmogorov conditions in approximation theory, and epsilon-maximum principles in optimal control. Here, we present several generalizations of Ekeland's variational principle for vector optimization problems with respect to variable ordering structures. For deriving these variational principles we use nonlinear scalarization techniques. Furthermore, we derive necessary conditions for approximate solutions of vector optimization problems with respect to variable ordering structures using these variational principles and the subdifferential calculus by Mordukhovich.
Variable Ordering Structures in Vector Optimization

Author: Gabriele Eichfelder
language: en
Publisher: Springer Science & Business Media
Release Date: 2014-04-04
This book provides an introduction to vector optimization with variable ordering structures, i.e., to optimization problems with a vector-valued objective function where the elements in the objective space are compared based on a variable ordering structure: instead of a partial ordering defined by a convex cone, we see a whole family of convex cones, one attached to each element of the objective space. The book starts by presenting several applications that have recently sparked new interest in these optimization problems, and goes on to discuss fundamentals and important results on a wide range of topics. The theory developed includes various optimality notions, linear and nonlinear scalarization functionals, optimality conditions of Fermat and Lagrange type, existence and duality results. The book closes with a collection of numerical approaches for solving these problems in practice.
Optimization, Variational Analysis and Applications

This book includes selected papers presented at the Indo-French Seminar on Optimization, Variational Analysis and Applications (IFSOVAA-2020), held at the Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India, from 2–4 February 2020. The book discusses current optimization problems and their solutions by using the powerful tool of variational analysis. Topics covered in this volume include set optimization, multiobjective optimization, mathematical programs with complementary, equilibrium, vanishing and switching constraints, copositive optimization, interval-valued optimization, sequential quadratic programming, bound-constrained optimization, variational inequalities, and more. Several applications in different branches of applied mathematics, engineering, economics, finance, and medical sciences have been included. Each chapter not only provides a detailed survey of the topic but also builds systematic theories and suitable algorithms to deduce the most recent findings in literature. This volume appeals to graduate students as well as researchers and practitioners in pure and applied mathematics and related fields that make use of variational analysis in solving optimization problems.