Efficient Quadrature Rules For Illumination Integrals

Download Efficient Quadrature Rules For Illumination Integrals PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Efficient Quadrature Rules For Illumination Integrals book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Efficient Quadrature Rules for Illumination Integrals

Rendering photorealistic images is a costly process which can take up to several days in the case of high quality images. In most cases, the task of sampling the incident radiance function to evaluate the illumination integral is responsible for an important share of the computation time. Therefore, to reach acceptable rendering times, the illumination integral must be evaluated using a limited set of samples. Such a restriction raises the question of how to obtain the most accurate approximation possible with such a limited set of samples. One must thus ensure that sampling produces the highest amount of information possible by carefully placing and weighting the limited set of samples. Furthermore, the integral evaluation should take into account not only the information brought by sampling but also possible information available prior to sampling, such as the integrand smoothness. This idea of sparse information and the need to fully exploit the little information available is present throughout this book. The presented methods correspond to the state-of-the-art solutions in computer graphics, and take into account information which had so far been underexploited (or even neglected) by the previous approaches. The intended audiences are Ph.D. students and researchers in the field of realistic image synthesis or global illumination algorithms, or any person with a solid background in graphics and numerical techniques.
Efficient Quadrature Rules for Illumination Integrals

Author: Ricardo Marques
language: en
Publisher: Morgan & Claypool Publishers
Release Date: 2015-06-01
Rendering photorealistic images is a costly process which can take up to several days in the case of high quality images. In most cases, the task of sampling the incident radiance function to evaluate the illumination integral is responsible for an important share of the computation time. Therefore, to reach acceptable rendering times, the illumination integral must be evaluated using a limited set of samples. Such a restriction raises the question of how to obtain the most accurate approximation possible with such a limited set of samples. One must thus ensure that sampling produces the highest amount of information possible by carefully placing and weighting the limited set of samples. Furthermore, the integral evaluation should take into account not only the information brought by sampling but also possible information available prior to sampling, such as the integrand smoothness. This idea of sparse information and the need to fully exploit the little information available is present throughout this book. The presented methods correspond to the state-of-the-art solutions in computer graphics, and take into account information which had so far been underexploited (or even neglected) by the previous approaches. The intended audiences are Ph.D. students and researchers in the field of realistic image synthesis or global illumination algorithms, or any person with a solid background in graphics and numerical techniques.
Mathematical Basics of Motion and Deformation in Computer Graphics, Second Edition

This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.