Efficient Abstraction And Refinement For Word Level Model Checking

Download Efficient Abstraction And Refinement For Word Level Model Checking PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Efficient Abstraction And Refinement For Word Level Model Checking book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Efficient Abstraction and Refinement for Word-level Model Checking

Model Checking (MC) on a word-level circuit has important applications in the IC design industry, where MC is used to prove that a word-level circuit always satisfies a set of given properties. MC is challenging at the word level, when complex arithmetic operators like multipliers are involved. Abstraction and refinement are commonly used to address challenging MC problems. If an abstraction is proved, so is the original problem. Otherwise, spurious counterexamples are analyzed to refine abstractions. Although many abstraction refinement algorithms for word-level MC have been developed, few take full advantage of state-of-the-art bit-level MC algorithms, like Property Directed Reachability (PDR), which is considered the most efficient method for deriving unbounded proofs. Therefore, this thesis presents several techniques that enable efficient word-level MC by performing abstraction refinement at the word-level while verifying abstractions at the bit-level. To compute good abstractions and refinements at the word-level, novel refinement strategies were proposed to take advantage of both structural and proof-based analysis. The proposed strategies are shown to achieve a good balance between the sizes of the abstractions and the number of refinement iterations needed for convergence. To achieve efficient integration of abstraction refinement and bit-level MC algorithms, a bit-level algorithm, PDRA, was created, that minimally modifies the original PDR algorithm to perform on-the-fly abstraction refinement. Inspired by this, a word-level algorithm, PDR-WLA, was developed that efficiently integrates bit-level PDR implementations with word-level abstraction refinement. An important feature is the re-use of reachability information learned in previous refinement iterations. Motivated by real industrial benchmarks characterized by having many related arithmetic operators, a word-level MC algorithm, UFAR, was proposed that uses uninterpreted functions (UF) constraints as a method of refinement. A UF constraint, between a pair of word-level operators, requires that if their inputs are equal then their outputs are equal. To enhance the applicability of UF constraints, a procedure for normalizing operators was devised. This allows UF constraints to be applied to a pair of same-type operators with different operator sizes and signedness. UFAR explicitly encodes UF constraints into word-level circuits. This allows any bit-level or word-level MC algorithm to be used, including both PDRA and PDR-WLA. All these developments were implemented in a publically available model checking system, ABC. Experiments were done which show that UFAR successfully solves most cases in a large set of challenging benchmarks provided by an industrial collaborator.
NASA Formal Methods

This book constitutes the proceedings of the 11th International Symposium on NASA Formal Methods, NFM 2019, held in Houston, TX, USA, in May 2019. The 20 full and 8 short papers presented in this volume were carefully reviewed and selected from 102 submissions. The papers focus on formal verification, including theorem proving, model checking, and static analysis; advances in automated theorem proving including SAT and SMT solving; use of formal methods in software and system testing; run-time verification; techniques and algorithms for scaling formal methods, such as abstraction and symbolic methods, compositional techniques, as well as parallel and/or distributed techniques; code generation from formally verified models; safety cases and system safety; formal approaches to fault tolerance; theoretical advances and empirical evaluations of formal methods techniques for safety-critical systems, including hybrid and embedded systems; formal methods in systems engineeringand model-based development; correct-by-design controller synthesis; formal assurance methods to handle adaptive systems.
Theory and Applications of Satisfiability Testing – SAT 2017

This book constitutes the refereed proceedings of the 20th International Conference on Theory and Applications of Satisfiability Testing, SAT 2017, held in Melbourne, Australia, in August/September 2017. The 22 revised full papers, 5 short papers, and 3 tool papers were carefully reviewed and selected from 64 submissions. The papers are organized in the following topical sections: algorithms, complexity, and lower bounds; clause learning and symmetry handling; maximum satisfiability and minimal correction sets; parallel SAT solving; quantified Boolean formulas; satisfiability modulo theories; and SAT encodings.