Edge Detection Methods Based On Generalized Type 2 Fuzzy Logic


Download Edge Detection Methods Based On Generalized Type 2 Fuzzy Logic PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Edge Detection Methods Based On Generalized Type 2 Fuzzy Logic book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Edge Detection Methods Based on Generalized Type-2 Fuzzy Logic


Edge Detection Methods Based on Generalized Type-2 Fuzzy Logic

Author: Claudia I. Gonzalez

language: en

Publisher: Springer

Release Date: 2017-03-05


DOWNLOAD





In this book four new methods are proposed. In the first method the generalized type-2 fuzzy logic is combined with the morphological gra-dient technique. The second method combines the general type-2 fuzzy systems (GT2 FSs) and the Sobel operator; in the third approach the me-thodology based on Sobel operator and GT2 FSs is improved to be applied on color images. In the fourth approach, we proposed a novel edge detec-tion method where, a digital image is converted a generalized type-2 fuzzy image. In this book it is also included a comparative study of type-1, inter-val type-2 and generalized type-2 fuzzy systems as tools to enhance edge detection in digital images when used in conjunction with the morphologi-cal gradient and the Sobel operator. The proposed generalized type-2 fuzzy edge detection methods were tested with benchmark images and synthetic images, in a grayscale and color format. Another contribution in this book is that the generalized type-2 fuzzy edge detector method is applied in the preprocessing phase of a face rec-ognition system; where the recognition system is based on a monolithic neural network. The aim of this part of the book is to show the advantage of using a generalized type-2 fuzzy edge detector in pattern recognition applications. The main goal of using generalized type-2 fuzzy logic in edge detec-tion applications is to provide them with the ability to handle uncertainty in processing real world images; otherwise, to demonstrate that a GT2 FS has a better performance than the edge detection methods based on type-1 and type-2 fuzzy logic systems.

General Type-2 Fuzzy Logic in Dynamic Parameter Adaptation for the Harmony Search Algorithm


General Type-2 Fuzzy Logic in Dynamic Parameter Adaptation for the Harmony Search Algorithm

Author: Fevrier Valdez

language: en

Publisher: Springer Nature

Release Date: 2020-03-27


DOWNLOAD





This book focuses on the fields of fuzzy logic and metaheuristic algorithms, particularly the harmony search algorithm and fuzzy control. There are currently several types of metaheuristics used to solve a range of real-world of problems, and these metaheuristics contain parameters that are usually fixed throughout the iterations. However, a number of techniques are also available that dynamically adjust the parameters of an algorithm, such as probabilistic fuzzy logic. This book proposes a method of addressing the problem of parameter adaptation in the original harmony search algorithm using type-1, interval type-2 and generalized type-2 fuzzy logic. The authors applied this methodology to the resolution of problems of classical benchmark mathematical functions, CEC 2015, CEC2017 functions and to the optimization of various fuzzy logic control cases, and tested the method using six benchmark control problems – four of the Mamdani type: the problem of filling a water tank, the problem of controlling the temperature of a shower, the problem of controlling the trajectory of an autonomous mobile robot and the problem of controlling the speed of an engine; and two of the Sugeno type: the problem of controlling the balance of a bar and ball, and the problem of controlling control the balance of an inverted pendulum. When the interval type-2 fuzzy logic system is used to model the behavior of the systems, the results show better stabilization because the uncertainty analysis is better. As such, the authors conclude that the proposed method, based on fuzzy systems, fuzzy controllers and the harmony search optimization algorithm, improves the behavior of complex control plants.

Extension of the Fuzzy Sugeno Integral Based on Generalized Type-2 Fuzzy Logic


Extension of the Fuzzy Sugeno Integral Based on Generalized Type-2 Fuzzy Logic

Author: Patricia Melin

language: en

Publisher: Springer

Release Date: 2019-03-28


DOWNLOAD





This book presents an extension of the aggregation operator of the generalized interval type-2 Sugeno integral using generalized type-2 fuzzy logic. This extension enables it to handle higher levels of uncertainty when adding any number of sources and types of information in a wide variety of decision-making applications. The authors also demonstrate that the extended aggregation operator offers better performance than other traditional or extended operators. The book is a valuables reference resource for students and researchers working on theory and applications of fuzzy logic in various areas of application where decision making is performed under high levels of uncertainty, such as pattern recognition, time series prediction, intelligent control and manufacturing.