Easy Statistics For Food Science With R

Download Easy Statistics For Food Science With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Easy Statistics For Food Science With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Easy Statistics for Food Science with R

Author: Abbas F.M. Alkarkhi
language: en
Publisher: Academic Press
Release Date: 2018-09-18
Easy Statistics for Food Science with R presents the application of statistical techniques to assist students and researchers who work in food science and food engineering in choosing the appropriate statistical technique. The book focuses on the use of univariate and multivariate statistical methods in the field of food science. The techniques are presented in a simplified form without relying on complex mathematical proofs. This book was written to help researchers from different fields to analyze their data and make valid decisions. The development of modern statistical packages makes the analysis of data easier than before. The book focuses on the application of statistics and correct methods for the analysis and interpretation of data. R statistical software is used throughout the book to analyze the data. - Contains numerous step-by-step tutorials help the reader to learn quickly - Covers the theory and application of the statistical techniques - Shows how to analyze data using R software - Provides R scripts for all examples and figures
Applied Statistics for Environmental Science with R

Applied Statistics for Environmental Science with R presents the theory and application of statistical techniques in environmental science and aids researchers in choosing the appropriate statistical technique for analyzing their data. Focusing on the use of univariate and multivariate statistical methods, this book acts as a step-by-step resource to facilitate understanding in the use of R statistical software for interpreting data in the field of environmental science. Researchers utilizing statistical analysis in environmental science and engineering will find this book to be essential in solving their day-to-day research problems. - Includes step-by-step tutorials to aid in understanding the process and implementation of unique data - Presents statistical theory in a simple way without complex mathematical proofs - Shows how to analyze data using R software and provides R scripts for all examples and figures
Applications of Hypothesis Testing for Environmental Science

Applications of Hypothesis Testing for Environmental Science presents the theory and application of hypothesis testing in environmental science, allowing researchers to carry out suitable tests for decision-making on a variety of issues. This book works as a step-by-step resource to provide understanding of the concepts and applications of hypothesis testing in the field of environmental science. The tests are presented in simplified form without relying on complex mathematical proofs to allow researchers to easily locate the most appropriate test and apply it to real-world situations. Each example is accompanied by a case study showing the application of the method to realistic data. This book provides step-by-step guidance in analyzing and testing various environmental data for researchers, postgraduates and graduates of environmental sciences, as well as academics looking for a book that includes case studies of the applications of hypothesis testing. It will also be a valuable resource for researchers in other related fields and those who are not familiar with the use of statistics who may need to analyze data or perform hypothesis tests in their research. - Includes step-by-step tutorials to aid in the understanding of procedures and allowing implementation of suitable tests - Presents the theory of hypothesis testing in a simple yet thorough manner without complex mathematical proofs - Describes how to implement hypothesis testing in analyzing and interpretation environmental science data